0
Conferences |

Adrenocortical Tumors: Recent Advances in Basic Concepts and Clinical Management FREE

Moderator: Stefan R. Bornstein, MD; Discussants: Constantine A. Stratakis, MD; and George P. Chrousos, MD
Ann Intern Med. 1999;130(9):759-771. doi:10.7326/0003-4819-130-9-199905040-00017
Text Size: A A A

Adrenocortical masses are among the most common tumors in humans. However, only a small proportion of these tumors cause endocrine diseases (such as primary hyperaldosteronism, hypercortisolism, hyperandrogenism, or hyperestrogenism), and less than 1% are malignant. In recent years, several of the molecular and cellular mechanisms involved in adrenal tumorigenesis have been unraveled. As a result, alterations in intercellular communication, local production of growth factors and cytokines, and aberrant expression of ectopic receptors on adrenal tumor cells have been implicated in adrenal cell growth, hyperplasia, tumor formation, and autonomous hormone production. Genetic and chromosomal abnormalities, including several chromosomal loci and the genes coding for p53, p57, and insulin-like growth factor II, have been reported in adrenal tumors. In addition, chromosomal markers have been identified in several familial syndromes associated with adrenal tumors; these include menin, which is responsible for multiple endocrine neoplasia type I, and the hybrid gene that causes glucocorticoid-remediable hyperaldosteronism. Algorithms for endocrine testing and imaging procedures are now available to codify screening for, confirmation of, and differentiation of causes of primary hyperaldosteronism and the Cushing syndrome. Improved radiologic, computerized radiologic, and magnetic resonance imaging techniques, as well as selective catheterization studies, are useful in localizing adrenal tumors and in distinguishing between benign and malignant lesions and between functional and nonfunctional nodules. Finally, recent refinements in the field of minimally invasive general surgery have made laparoscopic adrenalectomy the method of choice for removing adrenal tumors; this type of surgery allows shorter hospital stays, lower morbidity rates, and faster recovery.

Dr. Stefan Bornstein (Developmental Endocrinology Branch, National Institute of Child Health and Human Development [NICHD], National Institutes of Health [NIH], Bethesda, Maryland): Adrenocortical masses are common. On the basis of previous large autopsy series and the more recent use of sensitive computerized imaging techniques, it has been estimated that more than 3 of every 100 persons older than 50 years of age have adrenal nodules (15). Most of these nodules are benign and nonhypersecretory. Therefore, clinicians are routinely confronted with incidentally discovered adrenal masses and should be aware of recent developments in their biology and management.

Basic molecular and cell biology findings, including clarification of the roles of cell-cell communication, growth factors, cytokines, and aberrant cell membrane receptor expression, and other gene-related discoveries have increased our understanding of adrenal tumor biology. Here, we report on new aspects of adrenocortical tumorigenesis and their clinical implications. We also summarize recent advances in the diagnosis and management of adrenocortical tumors.

Fundamental principles of molecular and cell biology have been unraveled from intensive studies of isolated primary cells or cell lines. To understand the functioning of any organ or gland in vivo, however, we must combine this knowledge with insights into the complex intercellular tissue interactions, including paracrine interactions.

The adrenal cortex and the medulla have traditionally been considered distinct organs, with cortical cells regulated primarily by the systemic hormones corticotropin and angiotensin II and with adrenomedullary cells regulated by preganglionic sympathetic neurons secreting acetylcholine (67). However, several aspects of adrenocortical function cannot be explained so simply. In fact, discrepancies between concentrations of these regulatory hormones and secretory levels of corticosteroids strongly suggest the involvement of other regulatory mechanisms (810).

In addition to involving corticotropin and angiotensin II, the integrated control of adrenocortical function involves direct innervation (1112), regulation of blood supply to the gland (13), and intraglandular cell-cell interactions (8) (Figure 1). These systems not only are involved in the regulation of moment-to-moment functions but also participate in the development and differentiation of the adrenal gland and in adrenocortical adaptations and tumorigenesis (89, 14).

Grahic Jump Location
Figure 1.
Histologic characteristics of the normal human adrenal gland. A.B.arrowsZFC.NERVMITarrowsD.LYRERarrowsGolgi

Intermingling of adrenocortical and chromaffin tissue. Chromaffin cells are immunostained red with antibodies to chromogranin A (Clone Dako A3, Dako, Copenhagen, Denmark; original magnification, ×200). Endothelial cells immunostained with antibodies to CD31 (Dako) ( ) are in direct contact with adrenocortical cells in the zona fasciculata ( ). The reaction was visualized with 3-amino-ethylcarbasole (original magnification, ×800). Electron µgraph of a nerve cell ( ) in apposition with an adrenocortical cell. The latter shows vesicular mitochondria ( ) and extends filopodia ( ) to the nerve cell. Scale, 0.5 µm. Electron µgraph of a macrophage in direct contact with adrenocortical cells. Macrophages show lysosomes ( ), rough endoplasmic reticulum ( ), and pinocytotic vesicles ( ). Adrenocortical cells have ample mitochondria with characteristic vesicular internal membranes, smooth endoplasmic reticulum, and Golgi complex ( ). Scale, 1 µm. NUC = nucleus.

Grahic Jump Location

Adrenomedullary chromaffin cells are found in all zones of the adult adrenal cortex. Some appear as rays, at times stretching from the adrenal medulla through the entire cortex (1516); others appear as islets of many cells or as single cells surrounded by steroid-producing cells. Medullary cells, especially in the zona glomerulosa, frequently spread into the subcapsular region, forming large nests of chromaffin cells (1718). But cortical cells are also located in the adrenal medulla. This intimate intermingling of the adrenal gland's two distinct endocrine cell types allows extensive contact areas for juxta and paracrine interactions (Figure 1 A). Chromaffin cells produce a wide variety of autocrine/paracrine regulatory factors, including neuropeptides, classic neurotransmitters, and cytokines that stimulate adrenocortical steroidogenesis (8, 19). In addition, a local corticotropin-releasing hormone (CRH)-corticotropin system in the adrenal medulla participates in the intra-adrenal regulation of steroidogenesis (8).

Although corticotropin and angiotensin II, the classic stimulants of the adrenal cortex, have specific direct effects on adrenocortical growth and differentiation, some of their actions seem to be indirectly mediated by locally produced regulators. Thus, various peptide growth factors, including basic fibroblast growth factor (20), insulin-like growth factors I and II (21), and transforming growth factor-β1 (22), have recently emerged as multifunctional molecules that typically play regulatory roles in several tissues, including the adrenal gland (2324). Their actions on mitogenesis and tissue growth are mediated through receptors with tyrosine kinase activity. These receptors activate proto-oncogene transcription factors, such as c-fos and c-jun, through the mitogen-activated protein-kinase pathway (2528). The localized expression, release, and activation of such factors may moderate the actions of the circulating trophic hormones on the growth and differentiation of the zones of the adrenal cortex (2324).

Cytokines produced by immune cells that normally reside in the adrenal gland or by steroid-secreting cells directly influence adrenocortical function (2930). They may, like interleukin-1 and interleukin-6, stimulate steroidogenesis (3133), or they may, like tumor necrosis factor-α or interferon-γ, exert a negative regulatory influence on adrenal function and growth (3435). Of note, adrenocortical cells of the inner cortical zone express MHC class II molecules (3637). Expression of MHC class II antigen appears with the maturation of complete adrenal zonation during adrenarche and is highly correlated with the cellular differentiation of the adrenal cortex (37). The expression of these molecules is increased in benign adrenal adenomas and is abrogated in adrenocortical carcinomas (38).

The intercellular communication mechanisms described above are also involved in adrenal tumorigenesis. Hormonally active adrenocortical carcinomas abundantly express the insulin-like growth factor II gene, suggesting that insulin-like growth factor II may participate in the pathogenesis of these tumors (24, 3940). In addition, levels of both transforming growth factor-α and epidermal growth factor receptor expression were markedly higher in adrenocortical carcinomas than in benign tumors (41).

Adrenal adenomas frequently arise from cortical islets in the medulla (Figure 2 A). These islets, which are directly influenced by the surrounding adrenomedullary tissue, seem to be at greater risk for pathologic growth than the cortical cells within the adrenal cortex are (42).

Grahic Jump Location
Figure 2.
Immunostaining of specimens of adrenal adenoma. A.NODMB.

Adrenal nodules ( ) originating within the adrenal medulla ( ). Medullary cells are stained with an antibody to chromogranin A (original magnification, ×60). Lymphocytic infiltration in a cortisol-producing adrenal adenoma causing the Cushing syndrome. Lymphocytes characterized with antibodies to CD45 (Clone 2B 11, Dako, Copenhagen, Denmark) are in direct contact with adrenal tumor cells. No signs of autoimmune disease or inflammation were seen in this patient. The reaction was visualized with 3-amino-ethylcarbasole (original magnification, ×200). C = cortex.

Grahic Jump Location

Recent evidence shows that some adrenal tumors are triggered or promoted by aberrant expression and pathologic activation of several G-protein coupled receptors, such as those of vasopressin (43), gastric-inhibitory peptide (4445), vasoactive intestinal polypeptide (46), luteinizing hormone (47), and catecholamines (48). Therefore, the excess of cortisol production that causes the Cushing syndrome may in fact be under the control of inappropriate, illicit, or ectopic hormone receptors (49).

Recently, we reported on a patient who had a corticotropin-independent monoclonal adrenal adenoma with an aberrant expression of interleukin-1 receptor (50). Tumor cells produced cortisol in response to interleukin-1 but not in response to corticotropin. The adrenal tissue showed marked infiltration by mononuclear cells, which are a major source of cytokines, such as interleukin-1. In addition, monocytes stimulate production of cortisol by cultured human adrenocortical cells (51). Of note, lymphocytic infiltration was previously noted in histologic sections of as many as 15% of patients with the Cushing syndrome who had diffuse or nodular adrenal hyperplasia (Figure 2 B) (5253). It is not known whether these lymphocytes contribute to the hormonal excess or are a consequence of the adrenal disease.

In conclusion, aberrant hypersecretion of neuropeptides, neurotransmitters, growth factors, and cytokines that normally participate in the paracrine regulation of the adrenal cortex, together with ectopically or eutopically expressed receptors, may constitute an unregulated trophic stimulus that leads to increased function, hyperplasia, and tumorigenesis.

Dr. Constantine A. Stratakis (Unit on Genetics of Endocrinology, Developmental Endocrinology Branch, NICHD, NIH): The genetic background of adrenocortical tumors remains poorly understood (1). Adrenocortical hyperplasia seems to be a polyclonal process; however, most adrenocortical tumors, whether benign or malignant, are monoclonal lesions (1), indicating that genetic changes at specific loci in the genome are needed for adrenal tumorigenesis. These genes and loci are listed in the Table.

Table Jump PlaceholderTable.  Clinical and Molecular Features of Benign and Malignant Adrenocortical Neoplasms

For cortisol-producing tumors, the corticotropin receptor (the MC2R gene) (5455) and its signaling pathway, including the guanine-nucleotide-binding protein subunits Gsα (56) and Giα2 (G proteins), have been analyzed (57). For aldosterone-producing tumors, the aldosterone synthase receptor (the CYP11B2 gene) (5859) and the angiotensin II type 1 receptor (ATR-1) (60) have been investigated. Although no oncogenic mutations of the MC2R gene were found in adrenocortical tumors with variable histologic characteristics (55), the loss of heterozygosity of the MC2R gene locus on the short arm of chromosome 18 (18p11.2) occurred frequently in adrenocortical carcinomas but not in adenomas, supporting the involvement of this loss in carcinogenesis (54). Similarly, although the Gsα gene (the Gsp gene) was not mutated in sporadic adrenal tumors (56), patients with the McCune-Albright syndrome, who bear somatic mutations of this gene, may have such tumors (61).

In aldosterone-producing tumors, a hybrid gene created by the fusion of the corticotropin-regulated promoter of 11-β-hydroxylase (the CYP11B1 gene) and the sequence that codes for aldosterone synthase (the CYP11B2 gene) is the cause of familial hyperaldosteronism type I or glucocorticoid-remediable hyperaldosteronism (62), a disorder associated with aldosterone-producing tumors (63). However, the hybrid CYP11B1/CYP11B2 gene has not been found in other sporadic or familial aldosterone-producing adenomas (64), and the CYP11B2 gene chromosomal locus (8q24) (65) has been excluded in familial hyperaldosteronism type II (66), which also predisposes to aldosterone-producing adenomas (67). These investigations showed that the most obvious candidate genes did not participate in tumorigenesis in most adrenocortical lesions.

Molecular cytogenetic cloning approaches have been successfully used to investigate the genetics of adrenocortical tumors. Several chromosomal abnormalities have been implicated (6871). Loss of heterozygosity and other studies of these loci led to the identification of genes with tumor suppression or oncogenic function in the adrenal cortex. These include the genes coding for the p53 (TP53) (on 17p13.1) (7273), p57 (KIP2) (on 11p15) (7475), and insulin-like growth factor II (on 11p15.5) (3940, 76) proteins. Of note, patients with the Beckwith-Wiedemann syndrome, which maps to 11p15, often develop adrenocortical cancer (77).

Loss of heterozygosity of the chromosome 17 locus of the gene that codes for p53 in tumors from patients with the Li-Fraumeni syndrome led to the identification of germline p53 mutations in this genetic condition (72). However, patients with the Li-Fraumeni syndrome rarely develop adrenal cancer (78). In sporadic adrenal tumors, somatic p53 mutations occur in approximately 30% to 50% of malignant lesions (1, 7980). Although p53 expression does not correlate well with prognosis, it is rarely seen in the earlier stages of tumorigenesis, indicating that p53 mutations develop late in the process (71, 8182). Thus, other genetic events precede and may even predispose to p53 mutations in adrenocortical tumors.

Comparative genomic hybridization is a molecular cytogenetic technique that allows genome-wide screening of tumor DNA to identify chromosomal gains and losses (83). Regions of gain may contain dominantly acting oncogenes, whereas tumor suppressor genes may map to deleted regions (84). Recently, this technique was used successfully to identify chromosomal alterations in adrenocortical tumors (82, 85), leading to the finding of chromosomal band 9q34 amplification in a subset of these tumors (82). Of note, overall chromosomal gains were far more common than losses in all adrenocortical tumors studied so far (57, 82, 85).

With the help of a genome-wide screen linkage analysis, we recently identified two genomic loci involved in benign primary pigmented nodular adrenocortical disease (61, 8687). This disorder, which is inherited in an autosomal dominant manner and is usually seen in association with the Carney complex (a multiple endocrine neoplasia [MEN] and lentiginosis syndrome [70]), has been mapped to genomic loci on chromosomes 2 (2p16) (86) and 17 (17q23-24) (87). Similarly, a genome-wide screen is ongoing to identify the gene or genes involved in the aldosterone-producing hyperplasia and adenomas associated with familial hyperaldosteronism type II (6567, 88).

Menin, the gene responsible for MEN type 1 (89), is an example of a gene that may play a role in adrenocortical tumor formation and was identified by positional cloning (89). Approximately one third of patients with MEN type 1 have unilateral or bilateral adrenocortical tumors, although these lesions are clinically silent (90). Menin functions as a tumor suppressor gene (89), and loss of heterozygosity of its locus has been shown in adrenocortical tumors (69, 91).

In summary, genetic cloning approaches combined with loss of heterozygosity and tumor expression studies provide promising avenues for the improvement of our understanding of adrenocortical tumorigenesis.

Dr. George P. Chrousos (Developmental Endocrinology Branch, NICHD, NIH): In adults, adrenal masses other than adrenocortical tumors are pheochromocytomas, ganglioneuromas, cysts, myelolipomas, adenolipomas, and metastases from other tumors. This overview focuses on adrenocortical tumors, which represent more than 80% of all adrenal masses (1). Primary adrenocortical tumors are classified as benign or malignant. A sharp distinction between accessory cortical nodules, focal hyperplasia, and true adenomas cannot always be made (5). Most of these masses are benign, nonhyperfunctional nodules that produce no clinical endocrine symptoms (92). They occur often, as has been shown in autopsy and cross-sectional studies done by using imaging studies in various countries (1, 35, 9398). These “incidentalomas” gradually increase in frequency with age and occur in 3% to 7% of adults older than 50 years of age (5). About 5% to 8% of adrenal tumors are steroid-producing adenomas that cause hyperaldosteronism (the Conn syndrome) or primary hypercortisolism (the Cushing syndrome) (1). Aldosterone-producing adenomas are an uncommon cause of curable hypertension and are found in 0.7% to 2.2% of hypertensive persons (64, 99). Cortisol-producing neoplasms are responsible for 15% to 20% of cases of the Cushing syndrome; the rest are caused by corticotropin-secreting pituitary or ectopic tumors. Adrenocortical carcinomas are rare but exceedingly malignant. They account for 0.05% to 0.2% of all cases of cancer and have an annual incidence of approximately 1.7 new cases per million (100).

Aldosterone-Producing Adenomas

Aldosterone-producing adenomas are usually associated with hypertension with or without hypokalemia (101103). Screening tests for an aldosterone-producing adenoma include evaluation of hypertension and measurement of serum potassium. The coexistence of hypertension and hypokalemia predicts primary aldosteronism in 50% of cases (104). Endocrine testing includes measurement of plasma aldosterone, plasma renin activity, and 24-hour urinary aldosterone excretion. With modern two-site immunoradiometric assays, the results of direct renin measurement seem to be as valuable and accurate as plasma renin activity (105). A ratio of plasma aldosterone to plasma renin activity of 20 or more (measured while the patient is upright) suggests the presence of an aldosterone-producing tumor (64). The principle behind this test is that as aldosterone secretion increases, plasma renin activity should decrease because of sodium retention.

Earlier reliance on plasma potassium screening (106) may have led to under-recognition of the role of primary hyperaldosteronism in hypertension. An early study (99) that used saline infusion as a screening test found primary hyperaldosteronism in 2.2% of 1036 unselected hypertensive patients. However, a smaller study (107) that used the ratio of plasma aldosterone to plasma renin activity suggested that the incidence of primary hyperaldosteronism may account for about 10% in the “essential hypertensive” population. Primary hyperaldosteronism is most often diagnosed in middle-aged adults (mean age at diagnosis, 42 years); in a study of 136 patients (108), it seemed to be more common in women (64%) than in men (36%).

Drugs and renal impairment both interfere with the diagnostic reliability of the aldosterone-to-renin ratio test. β-adrenoceptor blocking drugs and dihydropyridine calcium-channel blocking agents should be withheld for 2 weeks before testing. Spironolactone and loop diuretics induce secondary hyperaldosteronism and thus should be withheld for 6 weeks before testing (109). Diltiazem, a nondihydropyridine calcium-channel blocker, can be used to control blood pressure during testing for primary hyperaldosteronism (64).

After a positive result is obtained on screening, testing should confirm aldosterone secretory autonomy and determine whether the patient has an aldosterone-producing adenoma, which can be treated surgically or medically, or idiopathic hyperaldosteronism, which calls for medical treatment (Figure 3).

Grahic Jump Location
Figure 3.
Diagnostic algorithm for primary hyperaldosteronism.

This algorithm suggests tests that are used for screening, confirmation, and localization of aldosterone-producing tumors. To convert aldosterone values to pmol/L, multiply by 27.744; to convert urinary aldosterone excretion to nmol/d, multiply by 2.774; to convert 18-hydroxycorticosterone values to nmol/L, multiply by 0.0276. If there is more than one item, follow the respective numbers throughout the algorithm. CT = computed tomography; MRI = magnetic resonance imaging.

Grahic Jump Location

Traditionally, autonomous aldosterone secretion has been confirmed with the saline infusion test. Alternative tests include 24-hour urine aldosterone excretion during oral salt loading and the fludrocortisone suppression test (109110). The principle of all of these tests is that lack of suppression of aldosterone excretion with intravascular volume expansion indicates autonomous aldosterone production. The risks for fluid expansion and hypokalemia in susceptible patients should be considered.

An aldosterone-to-renin ratio greater than 20, a plasma aldosterone level greater than 277.4 pmol/L after the saline infusion test, or a urinary aldosterone excretion value greater than 27.7 to 38.8 nmol/d after oral salt loading confirms the diagnosis of primary hyperaldosteronism (64, 99) (Figure 3). To differentiate between an aldosterone-producing adenoma and other forms of primary hyperaldosteronism, postural testing is done after overnight recumbency and plasma aldosterone and renin activity are measured in the morning at baseline and after 2 hours of ambulation. In idiopathic hyperaldosteronism, an increase in aldosterone levels is most often seen, but patients with aldosterone-producing adenomas usually show a decrease in aldosterone levels. A diagnostic accuracy of 85% has been reported for postural testing (111). Levels of 18-hydroxycorticosterone are elevated (>2.76 nmol/L) in patients with aldosterone-producing adenomas and are lower in patients with idiopathic hyperaldosteronism (Figure 3).

Glucocorticoid-remediable aldosteronism can be diagnosed with a 4-day dexamethasone suppression test (0.5 mg orally every 6 hours). Compared with direct genetic testing, this test has a sensitivity of 92% and a specificity of 100% for the diagnosis of glucocorticoid-remediable aldosteronism (58). Today, the hybrid gene mutation that causes glucocorticoid-remediable aldosteronism can be identified in most patients by Southern blotting or by use of a long polymerase chain reaction technique (58, 112).

Cortisol-Producing Adenomas

For cortisol-producing adenomas, several laboratory studies are useful in establishing or confirming excessive glucocorticoid secretion and in monitoring patients (1, 113). A good screening study is the single-dose (1 mg) overnight dexamethasone suppression test (Figure 4). Hypercortisolism, however, is best established by measuring 24-hour excretion of urinary free cortisol (113, 115117). More than 90% of patients with the Cushing syndrome have values for 24-hour excretion of urinary free cortisol greater than 551.8 nmol/d (normal range, 55.2 to 275.9 nmol/d) (115, 118). To confirm the diagnosis of the Cushing syndrome and exclude the possibility of a pseudo-Cushing state, the combined CRH-dexamethasone suppression test is highly reliable, with both sensitivity and specificity at almost 100% (113). This test is based on the principle that in the pseudo-Cushing states, excess cortisol is suppressible by dexamethasone and pituitary responsiveness to CRH is blunted. This is not the case in Cushing disease.

Grahic Jump Location
Figure 4.
Diagnostic algorithm for the Cushing syndrome.ACTH[114]

For the diagnosis of primary hypercortisolism, this algorithm suggests tests that are used for screening, confirmation, and localization of a cortisol-producing or corticotropin ( )-producing tumor. To convert serum cortisol values to nmol/L and to convert urine free cortisol values to nmol/d, multiply by 2.759. If there is more than one item, follow the respective numbers throughout the algorithm. BIPSS = bilateral inferior petrosal sinus sampling (measurement of plasma corticotropin concentrations in the inferior petrosal sinuses and a peripheral vein ); CRH = corticotropin-releasing hormone; CT = computed tomography; MRI = magnetic resonance imaging.

Grahic Jump Location

A low plasma corticotropin level associated with elevated concurrent plasma cortisol concentrations indicates autonomous activity of the adrenal glands (113, 118). Several dynamic endocrine tests differentiate adrenal Cushing syndrome from the corticotropin-dependent forms of the condition (113, 118). These tests include the classic high-dose dexamethasone suppression test and the ovine CRH stimulation test [114, 119121], both of which are typically associated with 1) cortisol secretion's lack of responsiveness to dexamethasone and CRH in primary adrenal Cushing syndrome or the ectopic corticotropin syndrome and 2) low or undetectable plasma corticotropin levels in primary adrenal Cushing syndrome. Differentiating among corticotropin-dependent forms of the Cushing syndrome may require bilateral inferior petrosal sinus sampling for measurement of central to peripheral corticotropin-concentration gradients (114).

Adrenal Cancer

Most types of adrenal cancer are large, hormonally active tumors that produce excessive amounts of cortisol or adrenal androgens (1, 122), including dehydroepiandrosterone and its sulfate. Generally, adrenocortical carcinomas have several defective steroid biosynthesis enzymes, causing elevated levels of steroid precursors typical of enzymatic blocks (116). Feminization or hyperaldosteronism can be confirmed by elevated plasma estradiol or estrone levels and by measurement of aldosterone, 11-deoxycorticosterone, or corticosterone.

Adrenal Incidentalomas

Management of incidentally discovered adrenal masses is controversial, and a wide range of recommendations exists about which tests are necessary and which patients should have surgery (25, 95, 98). On the basis of our own experience and a consideration of recent multicenter studies (9398), we suggest the following diagnostic approach: If an adrenal mass larger than 1 cm in diameter is found on imaging in an asymptomatic patient, biochemical screening should be done for latent hormonal hypersecretion syndromes, including hyperaldosteronism, hypercortisolism, pheochromocytoma, hyperandrogenism, and hyperestrogenism (3, 123). To screen for any aldosterone-producing adenoma, serum potassium levels should also be measured. For cortisol-secreting tumors, a single-dose (1 mg) overnight dexamethasone suppression test may be done. Given these findings and the clinical picture, further diagnostic steps should follow the algorithm for aldosterone-producing adenoma or the Cushing syndrome (Figure 3 and Figure 4). Elevated dehydroepiandrostenedione sulfate levels can be seen in patients with adrenal carcinomas and are useful for screening (1). The characteristic clinical symptoms of pheochromocytoma, including episodic headaches, sweating, and palpitations, may be absent. The potentially life-threatening course of undetected pheochromocytomas justifies screening by measuring plasma metanephrine levels or obtaining a 24-hour urine collection for catecholamines (124).

Diagnosis of adrenal neoplasms depends on the identification of an adrenal mass on computed tomography (CT) or magnetic resonance imaging (MRI). Both normal and abnormal adrenal glands are readily visible on CT because of the surrounding adipose tissue in the retroperitoneum (125). Computed tomography provides information about size, homogeneity, presence of calcifications, areas of necrosis, and extent of local invasion, making it helpful in decisions about the potential malignancy and resectability of the neoplasm. Adrenal masses as small as 10 mm can be reliably detected by CT (126127), although the relative lack of retroperitoneal fat in children might decrease the sensitivity of the test in this population (128).

Adrenal CT is 70% to 80% sensitive in detecting aldosterone-producing adenomas. In one large series (111), mean tumor size was 1.8 cm, but 20% of these tumors were smaller than 1 cm. Adrenal incidentalomas are also common in older adults; thus, adrenal CT is considered adjunctive and is usually not used to direct adrenalectomy without other confirmatory data.

Whether MRI will prove superior to CT in diagnosing and differentiating among adrenal masses remains to be seen. Magnetic resonance imaging can show the invasion of an adrenocortical carcinoma into blood vessels, particularly the inferior vena cava and the adrenal and renal veins, in which tumor thrombi may occasionally be identified (125). It can also distinguish fairly accurately among primary malignant adrenocortical tumors, nonfunctioning adenomas, and pheochromocytomas by comparing the ratio of the signal intensity of each type of adrenal mass to that of the liver (128). Primary malignant adrenocortical lesions have intermediate-to-high signal intensity on T2-weighted images, nonfunctional adenomas have low signal intensity, and pheochromocytomas have extremely high signal intensity. In-phase out-of-phase MRI is emerging as a reliable method for distinguishing between adrenal incidentalomas and metastases (68, 129130) and proved useful in identifying an aldosterone-producing adenoma in a patient with hyperaldosteronism and bilateral nodules (125) (Figure 5). Other imaging methods, such as iodocholesterol scanning, venography, and arteriography, are rarely indicated (115, 128, 131), but recent data show that selenocholesterol scanning may prove useful in assessing malignancy (95).

Grahic Jump Location
Figure 5.
Computed tomography (CT) and magnetic resonance imaging (MRI) of aldosterone-secreting adenomas. Top.arrowsMiddle.Bottom.

Adrenal CT of a 61-year-old woman with primary hyperaldosteronism and bilateral adrenal nodules ( ) did not identify an increased lipid content in either adenoma. In-phase MRI also failed to differentiate between the two sides. A loss of signal content of the functional aldosteronoma was shown by out-of-phase MRI. Venous sampling and surgery confirmed a right aldosteronoma. (Courtesy of J.L. Doppman).

Grahic Jump Location

Adrenal venous sampling remains the gold standard for the differential diagnosis of primary aldosteronism, especially because it has recently become clear that many tests used in the subtype evaluation of this condition provide variable and often inconclusive results (132). Comparison of aldosterone-to-cortisol ratios in the adrenal veins and the inferior vena cava allows detection of unilateral or bilateral sources of aldosterone hypersecretion. Although the cut-off for lateralization is controversial, ratios of 5:1 and 10:1 have been advocated (132133).

Hormone-secreting adrenocortical tumors and hormonally silent adrenal masses 5 cm or more in diameter should be excised, as should smaller masses with a suspicious appearance on imaging (5, 115, 134).

Recent refinements in the field of minimally invasive general surgery have made laparoscopic adrenalectomy the preferred treatment for benign adrenal abnormalities (135137). The advantage of this approach is that it allows precise dissection of the gland with minimal trauma. Patients benefit from shorter hospital stays, lower morbidity rates, and faster recovery (135136). Both transperitoneal and retroperitoneal approaches are possible (135), but the latter are preferred (138139). Tumors suspected of being malignant should be treated with conventional transperitoneal surgery (137, 139140).

All patients with aldosterone-producing adrenal tumors must have their blood pressure controlled and their potassium levels monitored before surgery. Unilateral adrenalectomy of an aldosterone-producing adenoma results in normotension in approximately 70% of cases and improves control of blood pressure and restores normal potassium levels in most cases (64, 103).

Persistent hypertension despite control of hyperaldosteronism may be due to coexisting essential hypertension, the long-term secondary vascular effects of hyperaldosteronism, or, rarely, another cause of secondary hypertension.

In patients with idiopathic hyperaldosteronism, hypokalemia and hypertension can be controlled with spironolactone (100 to 400 mg/d) or amiloride (5 to 30 mg/d), but additional antihypertensive agents are often needed (102). Hypertension in glucocorticoid-remediable aldosteronism can be controlled with physiologic doses of dexamethasone (64).

The treatment of choice for benign cortisol-producing adenomas is laparoscopic adrenalectomy (141). However, characterization of the pathophysiology of adrenal hyperplasias or tumors may eventually lead to the use of diverse pharmacologic therapies as alternatives (49). The success of pharmacotherapy has been illustrated by the short-term improvement in hypercortisolism seen with octreotide in patients with gastric-inhibitory peptide-dependent Cushing syndrome (4445) and by the long-term control of β-adrenergic receptor-dependent Cushing syndrome with propranolol (48).

For adrenocortical carcinoma, surgical resection is the only therapy that unquestionably cures or significantly prolongs survival, particularly if the disease is detected at stage I or stage II (132, 142). Radical excision with en bloc resection of any local invasion offers the best chance for cure or long-term survival. A wide exposure, achieved by using an extended subcostal incision or a thoracoabdominal approach, is needed (131). Patients who seem to have been cured with surgery still require long-term follow-up.

Mitotane has been used extensively in patients with adrenocortical carcinoma, but it is generally ineffective in prolonging overall survival in the advanced stages of the disease (122, 134). The side effects of mitotane are largely dose related. Weakness, somnolence, confusion, lethargy, and headache were reported in half of the patients treated (115, 122). More serious neurotoxicity, such as ataxia and dysarthria, may also occur (131). Most patients have gastrointestinal side effects, including anorexia, nausea, and diarrhea. Recently, monitoring serum mitotane concentrations was suggested as a way to provide long-term treatment with fewer side effects (143).

Incidentally discovered adrenal tumors should be surgically excised when hormonally active, regardless of their size (1). In addition, all nonsecretory tumors 5 cm or larger should be removed because the likelihood of malignancy increases with size (123). For patients with nonsecretory tumors smaller than 5 cm and no signs suggesting malignancy, an observational approach should include follow-up with CT 3 months after diagnosis (123).

Although the exact sequence of events leading to adrenal tumorigenesis is unclear, the process has multiple steps and varies from case to case. Many genetic abnormalities can account for the phenotypic heterogeneity and behavior of adrenocortical tumors. Production of local growth factors, cytokines, and neuroendocrine factors contribute to adrenal tumorigenesis, and aberrant expression of ectopic receptors allows control of adrenocortical cells by trophic factors not normally involved in their physiology.

Our increased understanding of the molecular and cellular mechanisms of adrenocortical oncogenesis may provide better choices and administration schedules for therapeutic agents. New compounds that capitalize on the differences in cell cycle control between normal cells and cancer cells are likely to be developed to maximize therapeutic effectiveness and minimize side effects. Finally, novel and improved imaging and minimally traumatic surgical techniques, such as laparoscopy, are bound to improve the treatment of adrenal disease.

Latronico AC, Chrousos GP.  Extensive personal experience: adrenocortical tumors. J Clin Endocrinol Metab. 1997; 82.1317-24
CrossRef
 
Ross NS, Aron DC.  Current hormonal evaluation of the patient with an incidentally discovered adrenal mass. N Engl J Med. 1990; 323.1401-5
CrossRef
 
Adler M, Robbins R.  Recent advances in the management of adrenal incidentalomas. Trends Endocrinol Metab. 1998; 9.190-4
CrossRef
 
Copeland PM.  The incidentally discovered adrenal mass. Ann Intern Med. 1983; 98.940-5
CrossRef
 
Kloos RT, Gross MD, Francis IR, Korobkin M, Shapiro B.  Incidentally discovered adrenal masses. Endocr Rev. 1995; 16.460-84
 
Chrousos GP.  Stressors, stress, and neuroendocrine integration of the adaptive response. The 1997 Hans Selye Memorial Lecture. Ann N Y Acad Sci. 1998; 851.311-35
CrossRef
 
Goldstein DS.  Stress response patterns. Goldstein DS Stress, Catecholamines, and Cardiovascular Disease. New York: Oxford Univ Pr; 1995.287-328
 
Ehrhart-Bornstein M, Hinson JP, Bornstein SR, Scherbaum WA, Vinson GP.  Intraadrenal interactions in the regulation of adrenocortical steroidogenesis. Endocr Rev. 1998; 19.101-43
CrossRef
 
Bornstein SR, Vaudry H.  Paracrine and neuroendocrine regulation of the adrenal gland—basic and clinical aspects [Editorial]. Horm Metab Res. 1998; 30.292-6
CrossRef
 
Pignatelli D, Magalhaes MM, Magalhaes MC.  Direct effects of stress on adrenocortical function. Horm Metab Res. 1998; 30.464-74
CrossRef
 
Engeland WC.  Functional innervation of the adrenal cortex by the splanchnic nerve. Horm Metab Res. 1998; 30.311-4
CrossRef
 
McDonald TJ, Nathanielsz PW.  The involvement of innervation in the regulation of fetal adrenal steroidogenesis. Horm Metab Res. 1998; 30.297-302
CrossRef
 
Vinson GP, Pudney JA, Whitehouse BJ.  The mammalian adrenal circulation and the relationship between adrenal blood flow and steroidogenesis. J Endocrinol. 1985; 105.285-94
CrossRef
 
Wolkersdörfer GW, Bornstein SR.  Tissue remodelling in the adrenal gland. Biochem Pharmacol. 1998; 56.163-71
CrossRef
 
Bornstein SR, Ehrhart-Bornstein M, Usadel H, Böckmann M, Scherbaum WA.  Morphological evidence for a close interaction of chromaffin cells with cortical cells within the adrenal gland. Cell Tissue Res. 1991; 265.1-9
CrossRef
 
Bornstein SR, González-Hernández JA, Ehrhart-Bornstein M, Adler G, Scherbaum WA.  Intimate contact of chromaffin and cortical cells within the human adrenal gland forms the cellular basis for important intraadrenal interactions. J Clin Endocrinol Metab. 1994; 78.225-32
CrossRef
 
Bornstein SR, Ehrhart-Bornstein M, Scherbaum WA, Pfeiffer EF, Holst JJ.  Effects of splanchnic nerve stimulation on the adrenal cortex may be mediated by chromaffin cells in a paracrine manner. Endocrinology. 1990; 127.900-6
CrossRef
 
Bornstein SR, Ehrhart-Bornstein M.  Ultrastructural evidence for a paracrine regulation of the rat adrenal cortex mediated by the local release of catecholamines from chromaffin cells. Endocrinology. 1992; 131.3126-8
CrossRef
 
Nussdorfer GG.  Paracrine control of adrenal cortical function by medullary chromaffin cells. Pharmacol Rev. 1996; 48.495-530
 
Baird A, Bohlen A.  Fibroblast growth factors. Sporn MB, Roberts AB Peptide Growth Factors and Their Receptors. v 1. Berlin: Springer-Verlag; 1990.369-418
 
Rechler MM, Nissley SP.  Insulin-like growth factors. Sporn MB, Roberts AB Peptide Growth Factors and Their Receptors. v 1. Berlin: Springer-Verlag; 1990.263-367
 
Roberts AB, Sporn MB.  The transforming growth factors-β. Sporn MB, Roberts AB Peptide Growth Factors and Their Receptors. v 1. Berlin: Springer-Verlag; 1990.419-72
 
Feige JJ, Baird A.  Growth factor regulation of adrenal cortex growth and function. Prog Growth Factor Res. 1991; 3.103-13
CrossRef
 
Voutilainen R.  Adrenocortical cells are the site of secretion and action of insulin-like growth factors and TNF-α. Horm Metab Res. 1998; 30.432-5
CrossRef
 
Panayotou G, Waterfield MD.  The assembly of signalling complexes by receptor tyrosine kinases. Bioessays. 1993; 15.171-7
CrossRef
 
LeRoith D, Sampson PC, Roberts CT Jr.  How does the mitogenic insulin-like growth-factor I receptor differ from the metabolic insulin receptor? Horm Res. 1994; 41.Suppl 274-8
CrossRef
 
Lee J, Pilch PF.  The insulin receptor: structure, function, and signaling. Am J Physiol. 1994; 266(2 Pt 1):C319-34.
 
Avruch J, Zhang X, Kyriakis JM.  Raf meets Ras: completing the framework of a signal transduction pathway. Trends Biochem Sci. 1994; 19.279-83
CrossRef
 
Ehrhart-Bornstein M, Bornstein SR, Scherbaum WA.  Sympathoadrenal system and immune system in the regulation of adrenocortical function. Eur J Endocrinol. 1996; 135.19-26
CrossRef
 
Marx C, Ehrhart-Bornstein M, Scherbaum WA, Bornstein SR.  Regulation of adrenocortical function by cytokines—relevance for immune-endocrine interaction. Horm Metab Res. 1998; 30.416-20
CrossRef
 
Roh MS, Drazenovich KA, Barbose JJ, Dinarello CA, Cobb CF.  Direct stimulation of the adrenal cortex by interleukin-1. Surgery. 1987; 102.140-6
 
Päth G, Bornstein SR, Ehrhart-Bornstein M, Scherbaum WA.  Interleukin-6 and the interleukin-6 receptor in the human adrenal gland: expression and effects on steroidogenesis. J Clin Endocrinol Metab. 1997; 82.2343-9
CrossRef
 
Päth G, Bornstein SR, Späth-Schwalbe E, Scherbaum WA.  Direct effects of interleukin-6 on human adrenal cells. Endocr Res. 1996; 22.867-73
 
Jäättelä M, Ilvesmäki V, Voutilainen R, Stenman UH, Saksela E.  Tumor necrosis factor as a potent inhibitor of adrenocorticotropin-induced cortisol production and steroidogenic P450 enzyme gene expression in cultured human fetal adrenal cells. Endocrinology. 1991; 128.623-9
CrossRef
 
Ilvesmäki V, Jäättelä M, Saksela E, Voutilainen R.  Tumor necrosis factor-α and interferon-γ inhibit insulin-like growth factor II gene expression in human fetal adrenal cell cultures. Mol Cell Endocrinol. 1993; 91.59-65
CrossRef
 
Khoury EL, Greenspan JS, Greenspan FS.  Adrenocortical cells of the zona reticularis normally express HLA-DR antigenic determinants. Am J Pathol. 1987; 127.580-91
 
Marx C, Bornstein SR, Wolkersdörfer GW, Peter M, Sippell WG, Scherbaum WA.  Relevance of major histocompatibility complex class II expression as a hallmark for the cellular differentiation in the human adrenal cortex. J Clin Endocrinol Metab. 1997; 82.3136-40
CrossRef
 
Marx C, Wolkersdörfer GW, Brown JW, Scherbaum WA, Bornstein SR.  MHC class II expression—a new tool to assess dignity in adrenocortical tumours. J Clin Endocrinol Metab. 1996; 81.4488-91
CrossRef
 
Ilvesmaki V, Kahri AI, Miettinen PJ, Voutilainen R.  Insulin-like growth factors (IGFs) and their receptors in adrenal tumors; high IGF-II expression in functional adrenocortical carcinomas. J Clin Endocrinol Metab. 1993; 77.852-8
CrossRef
 
Liu J, Kahri AI, Heikkila P, Ilvesmaki V, Voutilainen R.  H19 and insulin-like growth factor-II gene expression in adrenal tumors and cultural adrenal cells. J Clin Endocrinol Metab. 1995; 80.492-6
CrossRef
 
Sasano H, Suzuki T, Shizawa S, Kato K, Nagura H.  Transforming growth factor α, epidermal growth factor, and epidermal growth factor receptor expression in normal and diseased human adrenal cortex by immunohistochemistry and in situ hybridization. Mod Pathol. 1994; 7.741-6
 
Ehrhart-Bornstein M, Bornstein SR.  Regulation of adrenocortical function by the sympathoadrenal system: physiology and pathology. In: Margioris AN, Chrousos GP, eds. Adrenal Disorders. Humana Pr; [In press].
 
Lacroix A, Tremblay J, Touyz RM, Deng LY, Lariviere R, Cusson JR, et al..  Abnormal adrenal and vascular responses to vasopressin mediated by a V1-vasopressin receptor in a patient with adrenocorticotropin-independent macronodular adrenal hyperplasia, Cushing's syndrome, and orthostatic hypotension. J Clin Endocrinol Metab. 1997; 82.2414-22
CrossRef
 
Lacroix A, Bolté E, Tremblay J, Dupré J, Poitras P, Fournier H, et al..  Gastric inhibitory polypeptide-dependent cortisol hypersecretion—a new cause of Cushing's syndrome. N Engl J Med. 1992; 327.974-80
CrossRef
 
Reznik Y, Allali-Zerah V, Chayvialle JA, Leroyer R, Leymarie P, Travert G, et al..  Food-dependent Cushing's syndrome mediated by aberrant adrenal sensitivity to gastric inhibitory polypeptide. N Engl J Med. 1992; 327.981-6
CrossRef
 
Haidan A, Hilbers U, Bornstein SR, Ehrhart-Bornstein M.  Human adrenocortical NCI-H295 cells express VIP receptors. Steroidogenic effect of vasoactive intestinal peptide (VIP). Peptides. 1998; 19.1511-7
CrossRef
 
Leinonen P, Ranta T, Siegberg R, Pelkonen R, Heikkila T, Kahri A.  Testosterone-secreting virilizing adrenal adenoma with human chorionic gonadotrophin receptors and 21-hydroxylase deficiency. Clin Endocrinol Oxf. 1991; 34.31-5
CrossRef
 
Lacroix A, Tremblay J, Rousseau G, Bouvier M, Hamet P.  Propranolol therapy for ectopic β-adrenergic receptors in adrenal Cushing's syndrome. N Engl J Med. 1997; 337.1429-34
CrossRef
 
N'Diaye N, Tremblay J, Hamet P, Lacroix A.  Hormone receptor abnormalities in adrenal Cushing's syndrome. Horm Metab Res. 1998; 30.440-6
CrossRef
 
Willenberg HS, Stratakis CA, Marx C, Ehrhart-Bornstein M, Chrousos GP, Bornstein SR.  Aberrant interleukin-1 receptors in a cortisol-secreting adrenal adenoma causing Cushing's syndrome. N Engl J Med. 1998; 339.27-31
CrossRef
 
Whitcomb RW, Linehan WM, Wahl LM, Knazek RA.  Monocytes stimulate cortisol production by cultured human adrenocortical cells. J Clin Endocrinol Metab. 1988; 66.33-8
CrossRef
 
Wegienka LC, Komarmy LE, Wuepper KD, Forsham PH.  Cushing's syndrome with adrenal medullary insufficiency and adrenal autoantibodies. Lancet. 1966; 1.741-3
 
Andrada JA, Murray FT, Andrada EC, Ezrin C.  Cushing's syndrome and autoimmunity. Arch Pathol Lab Med. 1979; 103.244-6
 
Reincke M, Mora P, Beuschlein F, Arlt W, Chrousos GP, Allolio B.  Deletion of the adrenocorticotropin receptor gene in human adrenocortical tumors: implications for tumorigenesis. J Clin Endocrinol Metab. 1997; 82.3054-8
CrossRef
 
Latronico AC, Reincke M, Mendonca BB, Arai K, Mora P, Allolio B, et al..  No evidence for oncogenic mutations in the adrenocorticotropin receptor gene in human adrenocortical neoplasms. J Clin Endocrinol Metab. 1995; 80.875-7
CrossRef
 
Reincke M, Karl M, Travis W, Chrousos GP.  No evidence for oncogenic mutations in guanine nucleotide-binding proteins of human adrenocortical neoplasms. J Clin Endocrinol Metab. 1993; 77.1419-22
CrossRef
 
Reincke M.  Mutations in adrenocortical tumors. Horm Metab Res. 1998; 30.447-55
CrossRef
 
Litchfield WR, New MI, Coolidge C, Lifton RP, Dluhy RG.  Evaluation of the dexamethasone suppression test for the diagnosis of glucocorticoid-remediable aldosteronism. J Clin Endocrinol Metab. 1997; 82.3570-3
CrossRef
 
Ogishima T, Shibata H, Shimada H, Mitani F, Suzuki H, Saruta T, et al..  Aldosterone synthase cytochrome P-450 expressed in the adrenals of patients with primary aldosteronism. J Biol Chem. 1991; 266.10731-4
 
Sachse R, Shao XJ, Rico A, Finckh U, Rolfs A, Reincke M, et al..  Absence of angiotensin II type 1 receptor gene mutations in human adrenal tumors. Eur J Endocrinol. 1997; 137.262-6
CrossRef
 
Boston BA, Mandel S, LaFranchi S, Bliziotes M.  Activating mutation in the stimulatory guanine nucleotide-binding protein in an infant with Cushing's syndrome and nodular adrenal hyperplasia. J Clin Endocrinol Metab. 1994; 79.890-3
CrossRef
 
Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, et al..  A chimaeric 11 β-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992; 355.262-5
CrossRef
 
Dluhy RG, Lifton RP.  Glucocorticoid-remediable aldosteronism. Endocrinol Metab Clin North Am. 1994; 23.285-97
 
Torpy DJ, Stratakis CA, Chrousos GP.  Hyper- and hypoaldosteronism. Vitam Horm. 1999; 57.177-216
 
Taymans SE, Pack S, Pak E, Torpy DJ, Zhuang Z, Stratakis CA.  Human CYP11B2 (aldosterone synthase) maps to chromosome 8q24.3. J Clin Endocrinol Metab. 1998; 83.1033-6
CrossRef
 
Torpy DJ, Gordon RD, Lin JP, Huggard PR, Taymans SE, Stowasser M, et al..  Familial hyperaldosteronism type II: description of a large kindred and exclusion of the aldosterone synthase (CYP11B2) gene. J Clin Endocrinol Metab. 1998; 83.3214-8
CrossRef
 
Gordon RD.  Primary aldosteronism: a new understanding. Clin Exp Hypertens. 1997; 19.857-70
CrossRef
 
Henry I, Grandjouan S, Couillin P, Barichard F, Huerre-Jeanpierre C, Glaser T, et al..  Tumor-specific loss of 11p15.5 alleles in del11p13 Wilms tumor and in familial adrenocortical carcinoma. Proc Natl Acad Sci U S A. 1989; 86.3247-51
CrossRef
 
Beckers A, Abs R, Willems P.  Aldosterone-secreting adrenal adenoma as part of multiple endocrine neoplasia type 1 (MEN1): loss of heterozygosity for polymorphic chromosome 11 deoxyribonucleic acid markers, including the MEN1 locus. J Clin Endocrinol Metab. 1992; 75.564-70
CrossRef
 
Stratakis CA, Kirschner LS.  Clinical and genetic analysis of primary bilateral adrenal diseases (micro- and macronodular disease) leading to Cushing syndrome. Horm Metab Res. 1998; 30.456-63
CrossRef
 
Yano T, Linehan M, Anglard P, Lerman MI, Daniel LN, Stein CA, et al..  Genetic changes in human adrenocortical carcinomas. J Natl Cancer Inst. 1989; 81.518-23
CrossRef
 
Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, et al..  Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990; 250.1233-8
CrossRef
 
Lin SR, Lee YJ, Tsai JH.  Mutations of the p53 gene in human functional adrenal neoplasms. J Clin Endocrinol Metab. 1994; 78.483-91
CrossRef
 
Liu J, Kahri AI, Heikkila P, Voutilainen R.  Ribonucleic acid expression of the clustered imprinted genes, p57KIP2, insulin-growth factor II, and H19, in adrenal tumors and cultured adrenal cells. J Clin Endocrinol Metab. 1997; 82.1766-71
CrossRef
 
Hatada I, Inazawa J, Abe T, Nakayama M, Kaneko Y, Jinno Y, et al..  Genomic imprinting of human p57KIP2 and its reduced expression in Wilms' tumors. Hum Mol Genet. 1996; 5.783-8
CrossRef
 
Gicquel C, Raffin-Sanson ML, Gaston V, Bertagna X, Plouin PF, Schlumberger M, et al..  Structural and functional abnormalities at 11p15 are associated with the malignant phenotype in sporadic adrenocortical tumors: study on a series of 82 tumors. J Clin Endocrinol Metab. 1997; 82.2559-65
CrossRef
 
Clouston WM, Cannell GC, Fryar BG, Searle JW, Martin NI, Mortimer RH.  Virilizing adrenal adenoma in an adult with the Beckwith-Wiedemann syndrome: paradoxical response to dexamethasone. Clin Endocrinol Oxf. 1989; 31.467-73
CrossRef
 
Kleihues P, Schauble B, zur Hausen A, Esteve J, Ohgaki H.  Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol. 1997; 150.1-13
 
Wagner J, Portwine C, Rabin K, Leclerc JM, Narod SA, Malkin D.  High frequency of germline p53 mutations in childhood adrenocortical cancer. J Natl Cancer Inst. 1994; 86.1707-10
CrossRef
 
Sameshima Y, Tsunematsu Y, Watanabe S, Tsukamoto T, Kawa-ha K, Hirata Y, et al..  Detection of novel germ-line p53 mutations in diverse-cancer-prone families identified by selecting patients with childhood adrenocortical carcinoma. J Natl Cancer Inst. 1992; 84.703-7
CrossRef
 
Reincke M, Karl M, Travis WH, Mastorakos G, Allolio B, Linehan HM, et al..  p53 mutations in human adrenocortical neoplasms: immunohistochemical and molecular studies. J Clin Endocrinol Metab. 1994; 78.790-4
CrossRef
 
Figuereido BC, Stratakis CA, Sandrini R, DeLacerda L, Pianovski MA, Giatzakis C, et al..  Comparative genomic hybridization (CGH) analysis of adrenocortical tumors in childhood. J Clin Endocrinol Metab. 1999; 84.1116-21
CrossRef
 
Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, et al..  Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992; 258.818-21
CrossRef
 
du Manoir S, Speicher M, Joos S, Schrock E, Popp S, Dohner H, et al..  Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet. 1993; 90.590-610
 
Kjellman M, Kallioniemi OP, Karhu R, Hoog A, Farnebo LO, Auer G, et al..  Genetic aberrations in adrenocortical tumors detected using comparative genomic hybridization correlate with tumor size and malignancy. Cancer Res. 1996; 56.4219-23
 
Stratakis CA, Carney JA, Lin JP, Papanicolaou DA, Karl M, Kastner DL, et al..  Carney complex, a familial multiple neoplasia and lentiginosis syndrome. Analysis of 11 kindreds and linkage to the short arm of chromosome 2. J Clin Invest. 1996; 97.599-607
 
Casey M, Mah C, Merliss AD, Kirschner LS, Taymans SE, Denio AE, et al..  Identification of a novel genetic locus for familial cardiac myxomas and Carney complex. Circulation. 1998; 98.2560-6
CrossRef
 
Torpy DJ, Stratakis CA, Gordon RD.  Linkage analysis of familial hyperaldosteronism type II—absence of linkage to the gene encoding the angiotensin II receptor type I [Letter]. J Clin Endocrinol Metab. 1998; 83.1046
CrossRef
 
Chandrasekharappa SC, Guru SC, Manickam P, Olufemi SE, Collins FS, Emmert-Buck MR, et al..  Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science. 1997; 276.404-7
CrossRef
 
Skogseid B, Rastad J, Gobl A, Larsson C, Backlin K, Juhlin C, et al..  Adrenal lesion in multiple endocrine neoplasia type 1. Surgery. 1995; 118.1077-82
CrossRef
 
Marx S, Spiegel AM, Skarulis MC, Doppman JL, Collins FS, Liotta LA.  Multiple endocrine neoplasia type 1: clinical and genetic topics. Ann Intern Med. 1998; 129.484-94
CrossRef
 
Wenig BM, Heffess CS, Adair CF.  Atlas of Endocrine Pathology. Philadelphia: WB Saunders; 1997.272-87
 
Angeli A, Osella G, Ali A, Terzolo M.  Adrenal incidentaloma: an overview of clinical and epidemiological data from the National Italian Study Group. Horm Res. 1997; 47.279-83
CrossRef
 
Kasperlik-Zaluska AA, Roslonowska E, Slowinska-Srzednicka J, Migdalska B, Jeske W, Makowska A, et al..  Incidentally discovered adrenal mass (incidentaloma): investigation and management of 208 patients. Clin Endocrinol Oxf. 1997; 46.29-37
CrossRef
 
Barzon L, Scaroni C, Sonino N, Fallo F, Gregianin M, Macri C, et al..  Incidentally discovered adrenal tumors: endocrine and scintigraphic correlates. J Clin Endocrinol Metab. 1998; 83.55-62
CrossRef
 
Terzolo M, Ali A, Osella G, Mazza E.  Prevalence of adrenal carcinoma among incidentally discovered adrenal masses. A retrospective study from 1989 to 1994. Gruppo Piemontese Incidentalomi Surrenalici. Arch Surg. 1997; 132.914-9
CrossRef
 
Mantero F, Masini AM, Opocher G, Giovagnetti M, Arnaldi G.  Adrenal incidentaloma: an overview of hormonal data from the National Italian Study Group. Horm Res. 1997; 47.284-9
CrossRef
 
Bondanelli M, Campo M, Trasforini G, Ambrosio MR, Zatelli MC, Franceschetti P, et al..  Evaluation of hormonal function in a series of incidentally discovered adrenal masses. Metabolism. 1997; 46.107-13
CrossRef
 
Streeten DH, Tomycz N, Anderson GH.  Reliability of screening methods for the diagnosis of primary aldosteronism. Am J Med. 1979; 67.403-13
CrossRef
 
Lipsett MB, Hertz R, Ross GT.  Clinical and pathophysiologic aspects of adrenocortical carcinoma. Am J Med. 1963; 35.374
CrossRef
 
Conn JW.  Primary aldosteronism, a new clinical syndrome. J Lab Clin Med. 1955; 45.3-17
 
Biglieri EG.  Primary aldosteronism. Curr Ther Endocrinol Metab. 1997; 6.170-2
 
Blumenfeld JD, Sealey JE, Schlussel Y, Vaughan ED Jr, Sos TA, Atlas SA, et al..  Diagnosis and treatment of primary hyperaldosteronism. Ann Intern Med. 1994; 121.877-85
CrossRef
 
Melby JC.  Diagnosis of hyperaldosteronism. Endocrinol Metab Clin North Am. 1991; 20.247-55
 
Kruger C, Rauh M, Dorr HG.  Immunoreactive renin concentrations in healthy children from birth to adolescence. Clin Chim Acta. 1998; 274.15-27
CrossRef
 
Kaplan NM.  Endocrine hypertension. In: Wilson JD, Foster DW, eds. Williams Textbook of Endocrinology. 8th ed. Philadelphia: WB Saunders; 1992:707-31.
 
Gordon RD, Stowasser M, Tunny TJ, Klemm SA, Rutherford JC.  High incidence of primary aldosteronism in 199 patients referred with hypertension. Clin Exp Pharmacol Physiol. 1994; 21.315-8
CrossRef
 
Ferriss JB, Beevers DG, Brown JJ, Davies DL, Fraser R, Lever AF, et al..  Clinical, biochemical and pathological features of low-renin (“primary“) hyperaldosteronism. Am Heart J. 1978; 95.375-88
CrossRef
 
Edwards CR.  Primary mineralocorticoid excess syndromes. In: DeGroot LJ, ed. Endocrinology. 3d ed. Philadelphia: WB Saunders; 1995:1775-803.
 
Gordon RD.  Primary aldosteronism. J Endocrinol Invest. 1995; 18.495-511
 
Young WF Jr, Klee GG.  Primary aldosteronism. Diagnostic evaluation. Endocrinol Metab Clin North Am. 1988; 17.367-95
 
Jonsson JR, Klemm SA, Tunny TJ, Stowasser M, Gordon RD.  A new genetic test for familial hyperaldosteronism type 1 aids in the detection of curable hypertension. Biochem Biophys Res Commun. 1995; 207.565-71
CrossRef
 
Meier CA, Biller BM.  Clinical and biochemical evaluation of Cushing's syndrome. Endocrinol Metab Clin North Am. 1997; 26.741-62
CrossRef
 
Chrousos GP, Schuermeyer T, Doppman J, Oldfield EH, Schulte HM, Gold PW, et al..  NIH conference. Clinical applications of corticotropin-releasing factor. Ann Intern Med. 1985; 102.344-58
CrossRef
 
Flack M, Chrousos GP.  Neoplasms of the adrenal cortex. In: Holland JF, Bust RF, Morton DL, Frei EI, Kufe DW, Weischelbaum RK, eds. Cancer Medicine. 4th ed. Baltimore: Williams & Wilkins; 1996:1563-70.
 
Mendonca BB, Lucon AM, Menezes CA, Saldanha LB, Latronico AC, Zerbini C, et al..  Clinical, hormonal and pathological findings in a comparative study of adrenal cortical neoplasms in childhood and adulthood. J Urol. 1995; 154.2004-9
CrossRef
 
Freeman D.  Steroid hormone-producing tumors in man. Endocr Rev. 1986; 7.204-20
CrossRef
 
Crapo L.  Cushing's syndrome: a review of diagnostic tests. Metabolism. 1979; 28.955-77
CrossRef
 
Kaye TB, Crapo L.  The Cushing syndrome: an update of diagnostic tests. Ann Intern Med. 1990; 112.434-44
CrossRef
 
Nieman LK, Oldfield EH, Wesley R, Chrousos GP, Loriaux DL, Cutler GB Jr.  A simplified morning ovine corticotropin-releasing hormone stimulation test for the differential diagnosis of adrenocorticotropin-dependent Cushing's syndrome. J Clin Endocrinol Metab. 1993; 77.1308-12
CrossRef
 
Orth DN.  Cushing's syndrome. N Engl J Med. 1995; 332.791-803
CrossRef
 
Luton JP, Cerdas S, Billaud L, Thomas G, Guilhaume B, Bertagna X, et al..  Clinical features of adrenocortical carcinoma, prognostic factors, and the effect of mitotane therapy. N Engl J Med. 1990; 322.1195-201
CrossRef
 
Herrera MF, Grant CS, van Heerden JA, Sheedy PF, Ilstrup DM.  Incidentally discovered adrenal tumors: an institutional perspective. Surgery. 1991; 110.1014-21
 
Lenders JW, Keiser HR, Goldstein DS, Willemsen JJ, Friberg P, Jacobs MC, et al..  Plasma metanephrines in the diagnosis of pheochromocytoma. Ann Intern Med. 1995; 123.101-9
CrossRef
 
Doppman JL.  Problems in endocrinologic imaging. Endocrinol Metab Clin North Am. 1997; 26.973-91
CrossRef
 
Korobkin M.  Overview of adrenal imagine/adrenal CT. Urol Radiol. 1989; 11.221-6
CrossRef
 
Dunnick NR.  Hanson lecture. Adrenal imaging: current status. AJR Am J Roentgenol. 1990; 154.927-36
CrossRef
 
Shapiro B, Fig LM, Gross MD, Khafagi F.  Contributions of nuclear endocrinology to the diagnosis of adrenal tumors. Recent Results Cancer Res. 1990; 118.113-38
 
Korobkin M, Lombardi TJ, Aisen AM, Francis IR, Quint LE, Dunnick NR, et al..  Characterization of adrenal masses with chemical shift and gadolinium-enhanced MR imaging. Radiology. 1995; 197.411-8
 
Outwater EK, Siegelman ES, Radecki PD, Piccoli CW, Mitchell DG.  Distinction between benign and malignant adrenal masses: value of T1-weighted chemical-shift MR imaging. AJR Am J Roentgenol. 1995; 165.579-83
CrossRef
 
Barzilay JI, Pazianos AG.  Adrenocortical carcinoma. Urol Clin North Am. 1989; 16.457-68
 
Young WF Jr.  Pheochromocytoma and primary aldosteronism: diagnostic approaches. Endocrinol Metab Clin North Am. 1997; 26.801-27
CrossRef
 
Doppman JL, Gill JR Jr.  Hyperaldosteronism: sampling the adrenal veins. Radiology. 1996; 198.309-12
 
Schteingart D.  Treating adrenal cancer. Endocrinologist. 1992; 2.149-57
CrossRef
 
Chee C, Ravinthiran T, Cheng C.  Laparoscopic adrenalectomy: experience with transabdominal and retroperitoneal approaches. Urology. 1998; 51.29-32
CrossRef
 
Hansen P, Bax T, Swanstrom L.  Laparoscopic adrenalectomy: history, indications, and current techniques for a minimally invasive approach to adrenal pathology. Endoscopy. 1997; 29.309-14
CrossRef
 
Korman JE, Ho T, Hiatt JR, Phillips EH.  Comparison of laparoscopic and open adrenalectomy. Am Surg. 1997; 63.908-12
 
Miyake O, Yoshimura K, Yoshioka T, Honda M, Kokado Y, Miki T, et al..  Laparoscopic adrenalectomy. Comparison of the transperitoneal and retroperitoneal approach. Eur Urol. 1998; 33.303-7
CrossRef
 
Walz MK, Peitgen K, Saller B, Giebler RM, Lederbogen S, Nimtz K, et al..  Subtotal adrenalectomy by the posterior retroperitoneoscopic approach. World J Surg. 1998; 22.621-6
CrossRef
 
Gagner M, Pomp A, Heniford BT, Pharand D, Lacroix A.  Laparoscopic adrenalectomy: lessons learned from 100 consecutive procedures. Ann Surg. 1997; 226.238-46
CrossRef
 
Schell SR, Talamini MA, Udelsman R.  Laparoscopic adrenalectomy. Adv Surg. 1997; 31.333-50
 
Pommier RF, Brennan MF.  An eleven-year experience with adrenocortical carcinoma. Surgery. 1992; 112.963-70
 
Khorram-Manesh A, Ahlman H, Jansson S, Wangberg B, Nilsson O, Jakobsson CE, et al..  Adrenocortical carcinoma: surgery and mitotane for treatment and steroid profiles for follow-up. World J Surg. 1998; 22.605-11
CrossRef
 

Figures

Grahic Jump Location
Figure 1.
Histologic characteristics of the normal human adrenal gland. A.B.arrowsZFC.NERVMITarrowsD.LYRERarrowsGolgi

Intermingling of adrenocortical and chromaffin tissue. Chromaffin cells are immunostained red with antibodies to chromogranin A (Clone Dako A3, Dako, Copenhagen, Denmark; original magnification, ×200). Endothelial cells immunostained with antibodies to CD31 (Dako) ( ) are in direct contact with adrenocortical cells in the zona fasciculata ( ). The reaction was visualized with 3-amino-ethylcarbasole (original magnification, ×800). Electron µgraph of a nerve cell ( ) in apposition with an adrenocortical cell. The latter shows vesicular mitochondria ( ) and extends filopodia ( ) to the nerve cell. Scale, 0.5 µm. Electron µgraph of a macrophage in direct contact with adrenocortical cells. Macrophages show lysosomes ( ), rough endoplasmic reticulum ( ), and pinocytotic vesicles ( ). Adrenocortical cells have ample mitochondria with characteristic vesicular internal membranes, smooth endoplasmic reticulum, and Golgi complex ( ). Scale, 1 µm. NUC = nucleus.

Grahic Jump Location
Grahic Jump Location
Figure 2.
Immunostaining of specimens of adrenal adenoma. A.NODMB.

Adrenal nodules ( ) originating within the adrenal medulla ( ). Medullary cells are stained with an antibody to chromogranin A (original magnification, ×60). Lymphocytic infiltration in a cortisol-producing adrenal adenoma causing the Cushing syndrome. Lymphocytes characterized with antibodies to CD45 (Clone 2B 11, Dako, Copenhagen, Denmark) are in direct contact with adrenal tumor cells. No signs of autoimmune disease or inflammation were seen in this patient. The reaction was visualized with 3-amino-ethylcarbasole (original magnification, ×200). C = cortex.

Grahic Jump Location
Grahic Jump Location
Figure 3.
Diagnostic algorithm for primary hyperaldosteronism.

This algorithm suggests tests that are used for screening, confirmation, and localization of aldosterone-producing tumors. To convert aldosterone values to pmol/L, multiply by 27.744; to convert urinary aldosterone excretion to nmol/d, multiply by 2.774; to convert 18-hydroxycorticosterone values to nmol/L, multiply by 0.0276. If there is more than one item, follow the respective numbers throughout the algorithm. CT = computed tomography; MRI = magnetic resonance imaging.

Grahic Jump Location
Grahic Jump Location
Figure 4.
Diagnostic algorithm for the Cushing syndrome.ACTH[114]

For the diagnosis of primary hypercortisolism, this algorithm suggests tests that are used for screening, confirmation, and localization of a cortisol-producing or corticotropin ( )-producing tumor. To convert serum cortisol values to nmol/L and to convert urine free cortisol values to nmol/d, multiply by 2.759. If there is more than one item, follow the respective numbers throughout the algorithm. BIPSS = bilateral inferior petrosal sinus sampling (measurement of plasma corticotropin concentrations in the inferior petrosal sinuses and a peripheral vein ); CRH = corticotropin-releasing hormone; CT = computed tomography; MRI = magnetic resonance imaging.

Grahic Jump Location
Grahic Jump Location
Figure 5.
Computed tomography (CT) and magnetic resonance imaging (MRI) of aldosterone-secreting adenomas. Top.arrowsMiddle.Bottom.

Adrenal CT of a 61-year-old woman with primary hyperaldosteronism and bilateral adrenal nodules ( ) did not identify an increased lipid content in either adenoma. In-phase MRI also failed to differentiate between the two sides. A loss of signal content of the functional aldosteronoma was shown by out-of-phase MRI. Venous sampling and surgery confirmed a right aldosteronoma. (Courtesy of J.L. Doppman).

Grahic Jump Location

Tables

Table Jump PlaceholderTable.  Clinical and Molecular Features of Benign and Malignant Adrenocortical Neoplasms

References

Latronico AC, Chrousos GP.  Extensive personal experience: adrenocortical tumors. J Clin Endocrinol Metab. 1997; 82.1317-24
CrossRef
 
Ross NS, Aron DC.  Current hormonal evaluation of the patient with an incidentally discovered adrenal mass. N Engl J Med. 1990; 323.1401-5
CrossRef
 
Adler M, Robbins R.  Recent advances in the management of adrenal incidentalomas. Trends Endocrinol Metab. 1998; 9.190-4
CrossRef
 
Copeland PM.  The incidentally discovered adrenal mass. Ann Intern Med. 1983; 98.940-5
CrossRef
 
Kloos RT, Gross MD, Francis IR, Korobkin M, Shapiro B.  Incidentally discovered adrenal masses. Endocr Rev. 1995; 16.460-84
 
Chrousos GP.  Stressors, stress, and neuroendocrine integration of the adaptive response. The 1997 Hans Selye Memorial Lecture. Ann N Y Acad Sci. 1998; 851.311-35
CrossRef
 
Goldstein DS.  Stress response patterns. Goldstein DS Stress, Catecholamines, and Cardiovascular Disease. New York: Oxford Univ Pr; 1995.287-328
 
Ehrhart-Bornstein M, Hinson JP, Bornstein SR, Scherbaum WA, Vinson GP.  Intraadrenal interactions in the regulation of adrenocortical steroidogenesis. Endocr Rev. 1998; 19.101-43
CrossRef
 
Bornstein SR, Vaudry H.  Paracrine and neuroendocrine regulation of the adrenal gland—basic and clinical aspects [Editorial]. Horm Metab Res. 1998; 30.292-6
CrossRef
 
Pignatelli D, Magalhaes MM, Magalhaes MC.  Direct effects of stress on adrenocortical function. Horm Metab Res. 1998; 30.464-74
CrossRef
 
Engeland WC.  Functional innervation of the adrenal cortex by the splanchnic nerve. Horm Metab Res. 1998; 30.311-4
CrossRef
 
McDonald TJ, Nathanielsz PW.  The involvement of innervation in the regulation of fetal adrenal steroidogenesis. Horm Metab Res. 1998; 30.297-302
CrossRef
 
Vinson GP, Pudney JA, Whitehouse BJ.  The mammalian adrenal circulation and the relationship between adrenal blood flow and steroidogenesis. J Endocrinol. 1985; 105.285-94
CrossRef
 
Wolkersdörfer GW, Bornstein SR.  Tissue remodelling in the adrenal gland. Biochem Pharmacol. 1998; 56.163-71
CrossRef
 
Bornstein SR, Ehrhart-Bornstein M, Usadel H, Böckmann M, Scherbaum WA.  Morphological evidence for a close interaction of chromaffin cells with cortical cells within the adrenal gland. Cell Tissue Res. 1991; 265.1-9
CrossRef
 
Bornstein SR, González-Hernández JA, Ehrhart-Bornstein M, Adler G, Scherbaum WA.  Intimate contact of chromaffin and cortical cells within the human adrenal gland forms the cellular basis for important intraadrenal interactions. J Clin Endocrinol Metab. 1994; 78.225-32
CrossRef
 
Bornstein SR, Ehrhart-Bornstein M, Scherbaum WA, Pfeiffer EF, Holst JJ.  Effects of splanchnic nerve stimulation on the adrenal cortex may be mediated by chromaffin cells in a paracrine manner. Endocrinology. 1990; 127.900-6
CrossRef
 
Bornstein SR, Ehrhart-Bornstein M.  Ultrastructural evidence for a paracrine regulation of the rat adrenal cortex mediated by the local release of catecholamines from chromaffin cells. Endocrinology. 1992; 131.3126-8
CrossRef
 
Nussdorfer GG.  Paracrine control of adrenal cortical function by medullary chromaffin cells. Pharmacol Rev. 1996; 48.495-530
 
Baird A, Bohlen A.  Fibroblast growth factors. Sporn MB, Roberts AB Peptide Growth Factors and Their Receptors. v 1. Berlin: Springer-Verlag; 1990.369-418
 
Rechler MM, Nissley SP.  Insulin-like growth factors. Sporn MB, Roberts AB Peptide Growth Factors and Their Receptors. v 1. Berlin: Springer-Verlag; 1990.263-367
 
Roberts AB, Sporn MB.  The transforming growth factors-β. Sporn MB, Roberts AB Peptide Growth Factors and Their Receptors. v 1. Berlin: Springer-Verlag; 1990.419-72
 
Feige JJ, Baird A.  Growth factor regulation of adrenal cortex growth and function. Prog Growth Factor Res. 1991; 3.103-13
CrossRef
 
Voutilainen R.  Adrenocortical cells are the site of secretion and action of insulin-like growth factors and TNF-α. Horm Metab Res. 1998; 30.432-5
CrossRef
 
Panayotou G, Waterfield MD.  The assembly of signalling complexes by receptor tyrosine kinases. Bioessays. 1993; 15.171-7
CrossRef
 
LeRoith D, Sampson PC, Roberts CT Jr.  How does the mitogenic insulin-like growth-factor I receptor differ from the metabolic insulin receptor? Horm Res. 1994; 41.Suppl 274-8
CrossRef
 
Lee J, Pilch PF.  The insulin receptor: structure, function, and signaling. Am J Physiol. 1994; 266(2 Pt 1):C319-34.
 
Avruch J, Zhang X, Kyriakis JM.  Raf meets Ras: completing the framework of a signal transduction pathway. Trends Biochem Sci. 1994; 19.279-83
CrossRef
 
Ehrhart-Bornstein M, Bornstein SR, Scherbaum WA.  Sympathoadrenal system and immune system in the regulation of adrenocortical function. Eur J Endocrinol. 1996; 135.19-26
CrossRef
 
Marx C, Ehrhart-Bornstein M, Scherbaum WA, Bornstein SR.  Regulation of adrenocortical function by cytokines—relevance for immune-endocrine interaction. Horm Metab Res. 1998; 30.416-20
CrossRef
 
Roh MS, Drazenovich KA, Barbose JJ, Dinarello CA, Cobb CF.  Direct stimulation of the adrenal cortex by interleukin-1. Surgery. 1987; 102.140-6
 
Päth G, Bornstein SR, Ehrhart-Bornstein M, Scherbaum WA.  Interleukin-6 and the interleukin-6 receptor in the human adrenal gland: expression and effects on steroidogenesis. J Clin Endocrinol Metab. 1997; 82.2343-9
CrossRef
 
Päth G, Bornstein SR, Späth-Schwalbe E, Scherbaum WA.  Direct effects of interleukin-6 on human adrenal cells. Endocr Res. 1996; 22.867-73
 
Jäättelä M, Ilvesmäki V, Voutilainen R, Stenman UH, Saksela E.  Tumor necrosis factor as a potent inhibitor of adrenocorticotropin-induced cortisol production and steroidogenic P450 enzyme gene expression in cultured human fetal adrenal cells. Endocrinology. 1991; 128.623-9
CrossRef
 
Ilvesmäki V, Jäättelä M, Saksela E, Voutilainen R.  Tumor necrosis factor-α and interferon-γ inhibit insulin-like growth factor II gene expression in human fetal adrenal cell cultures. Mol Cell Endocrinol. 1993; 91.59-65
CrossRef
 
Khoury EL, Greenspan JS, Greenspan FS.  Adrenocortical cells of the zona reticularis normally express HLA-DR antigenic determinants. Am J Pathol. 1987; 127.580-91
 
Marx C, Bornstein SR, Wolkersdörfer GW, Peter M, Sippell WG, Scherbaum WA.  Relevance of major histocompatibility complex class II expression as a hallmark for the cellular differentiation in the human adrenal cortex. J Clin Endocrinol Metab. 1997; 82.3136-40
CrossRef
 
Marx C, Wolkersdörfer GW, Brown JW, Scherbaum WA, Bornstein SR.  MHC class II expression—a new tool to assess dignity in adrenocortical tumours. J Clin Endocrinol Metab. 1996; 81.4488-91
CrossRef
 
Ilvesmaki V, Kahri AI, Miettinen PJ, Voutilainen R.  Insulin-like growth factors (IGFs) and their receptors in adrenal tumors; high IGF-II expression in functional adrenocortical carcinomas. J Clin Endocrinol Metab. 1993; 77.852-8
CrossRef
 
Liu J, Kahri AI, Heikkila P, Ilvesmaki V, Voutilainen R.  H19 and insulin-like growth factor-II gene expression in adrenal tumors and cultural adrenal cells. J Clin Endocrinol Metab. 1995; 80.492-6
CrossRef
 
Sasano H, Suzuki T, Shizawa S, Kato K, Nagura H.  Transforming growth factor α, epidermal growth factor, and epidermal growth factor receptor expression in normal and diseased human adrenal cortex by immunohistochemistry and in situ hybridization. Mod Pathol. 1994; 7.741-6
 
Ehrhart-Bornstein M, Bornstein SR.  Regulation of adrenocortical function by the sympathoadrenal system: physiology and pathology. In: Margioris AN, Chrousos GP, eds. Adrenal Disorders. Humana Pr; [In press].
 
Lacroix A, Tremblay J, Touyz RM, Deng LY, Lariviere R, Cusson JR, et al..  Abnormal adrenal and vascular responses to vasopressin mediated by a V1-vasopressin receptor in a patient with adrenocorticotropin-independent macronodular adrenal hyperplasia, Cushing's syndrome, and orthostatic hypotension. J Clin Endocrinol Metab. 1997; 82.2414-22
CrossRef
 
Lacroix A, Bolté E, Tremblay J, Dupré J, Poitras P, Fournier H, et al..  Gastric inhibitory polypeptide-dependent cortisol hypersecretion—a new cause of Cushing's syndrome. N Engl J Med. 1992; 327.974-80
CrossRef
 
Reznik Y, Allali-Zerah V, Chayvialle JA, Leroyer R, Leymarie P, Travert G, et al..  Food-dependent Cushing's syndrome mediated by aberrant adrenal sensitivity to gastric inhibitory polypeptide. N Engl J Med. 1992; 327.981-6
CrossRef
 
Haidan A, Hilbers U, Bornstein SR, Ehrhart-Bornstein M.  Human adrenocortical NCI-H295 cells express VIP receptors. Steroidogenic effect of vasoactive intestinal peptide (VIP). Peptides. 1998; 19.1511-7
CrossRef
 
Leinonen P, Ranta T, Siegberg R, Pelkonen R, Heikkila T, Kahri A.  Testosterone-secreting virilizing adrenal adenoma with human chorionic gonadotrophin receptors and 21-hydroxylase deficiency. Clin Endocrinol Oxf. 1991; 34.31-5
CrossRef
 
Lacroix A, Tremblay J, Rousseau G, Bouvier M, Hamet P.  Propranolol therapy for ectopic β-adrenergic receptors in adrenal Cushing's syndrome. N Engl J Med. 1997; 337.1429-34
CrossRef
 
N'Diaye N, Tremblay J, Hamet P, Lacroix A.  Hormone receptor abnormalities in adrenal Cushing's syndrome. Horm Metab Res. 1998; 30.440-6
CrossRef
 
Willenberg HS, Stratakis CA, Marx C, Ehrhart-Bornstein M, Chrousos GP, Bornstein SR.  Aberrant interleukin-1 receptors in a cortisol-secreting adrenal adenoma causing Cushing's syndrome. N Engl J Med. 1998; 339.27-31
CrossRef
 
Whitcomb RW, Linehan WM, Wahl LM, Knazek RA.  Monocytes stimulate cortisol production by cultured human adrenocortical cells. J Clin Endocrinol Metab. 1988; 66.33-8
CrossRef
 
Wegienka LC, Komarmy LE, Wuepper KD, Forsham PH.  Cushing's syndrome with adrenal medullary insufficiency and adrenal autoantibodies. Lancet. 1966; 1.741-3
 
Andrada JA, Murray FT, Andrada EC, Ezrin C.  Cushing's syndrome and autoimmunity. Arch Pathol Lab Med. 1979; 103.244-6
 
Reincke M, Mora P, Beuschlein F, Arlt W, Chrousos GP, Allolio B.  Deletion of the adrenocorticotropin receptor gene in human adrenocortical tumors: implications for tumorigenesis. J Clin Endocrinol Metab. 1997; 82.3054-8
CrossRef
 
Latronico AC, Reincke M, Mendonca BB, Arai K, Mora P, Allolio B, et al..  No evidence for oncogenic mutations in the adrenocorticotropin receptor gene in human adrenocortical neoplasms. J Clin Endocrinol Metab. 1995; 80.875-7
CrossRef
 
Reincke M, Karl M, Travis W, Chrousos GP.  No evidence for oncogenic mutations in guanine nucleotide-binding proteins of human adrenocortical neoplasms. J Clin Endocrinol Metab. 1993; 77.1419-22
CrossRef
 
Reincke M.  Mutations in adrenocortical tumors. Horm Metab Res. 1998; 30.447-55
CrossRef
 
Litchfield WR, New MI, Coolidge C, Lifton RP, Dluhy RG.  Evaluation of the dexamethasone suppression test for the diagnosis of glucocorticoid-remediable aldosteronism. J Clin Endocrinol Metab. 1997; 82.3570-3
CrossRef
 
Ogishima T, Shibata H, Shimada H, Mitani F, Suzuki H, Saruta T, et al..  Aldosterone synthase cytochrome P-450 expressed in the adrenals of patients with primary aldosteronism. J Biol Chem. 1991; 266.10731-4
 
Sachse R, Shao XJ, Rico A, Finckh U, Rolfs A, Reincke M, et al..  Absence of angiotensin II type 1 receptor gene mutations in human adrenal tumors. Eur J Endocrinol. 1997; 137.262-6
CrossRef
 
Boston BA, Mandel S, LaFranchi S, Bliziotes M.  Activating mutation in the stimulatory guanine nucleotide-binding protein in an infant with Cushing's syndrome and nodular adrenal hyperplasia. J Clin Endocrinol Metab. 1994; 79.890-3
CrossRef
 
Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, et al..  A chimaeric 11 β-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992; 355.262-5
CrossRef
 
Dluhy RG, Lifton RP.  Glucocorticoid-remediable aldosteronism. Endocrinol Metab Clin North Am. 1994; 23.285-97
 
Torpy DJ, Stratakis CA, Chrousos GP.  Hyper- and hypoaldosteronism. Vitam Horm. 1999; 57.177-216
 
Taymans SE, Pack S, Pak E, Torpy DJ, Zhuang Z, Stratakis CA.  Human CYP11B2 (aldosterone synthase) maps to chromosome 8q24.3. J Clin Endocrinol Metab. 1998; 83.1033-6
CrossRef
 
Torpy DJ, Gordon RD, Lin JP, Huggard PR, Taymans SE, Stowasser M, et al..  Familial hyperaldosteronism type II: description of a large kindred and exclusion of the aldosterone synthase (CYP11B2) gene. J Clin Endocrinol Metab. 1998; 83.3214-8
CrossRef
 
Gordon RD.  Primary aldosteronism: a new understanding. Clin Exp Hypertens. 1997; 19.857-70
CrossRef
 
Henry I, Grandjouan S, Couillin P, Barichard F, Huerre-Jeanpierre C, Glaser T, et al..  Tumor-specific loss of 11p15.5 alleles in del11p13 Wilms tumor and in familial adrenocortical carcinoma. Proc Natl Acad Sci U S A. 1989; 86.3247-51
CrossRef
 
Beckers A, Abs R, Willems P.  Aldosterone-secreting adrenal adenoma as part of multiple endocrine neoplasia type 1 (MEN1): loss of heterozygosity for polymorphic chromosome 11 deoxyribonucleic acid markers, including the MEN1 locus. J Clin Endocrinol Metab. 1992; 75.564-70
CrossRef
 
Stratakis CA, Kirschner LS.  Clinical and genetic analysis of primary bilateral adrenal diseases (micro- and macronodular disease) leading to Cushing syndrome. Horm Metab Res. 1998; 30.456-63
CrossRef
 
Yano T, Linehan M, Anglard P, Lerman MI, Daniel LN, Stein CA, et al..  Genetic changes in human adrenocortical carcinomas. J Natl Cancer Inst. 1989; 81.518-23
CrossRef
 
Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, et al..  Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990; 250.1233-8
CrossRef
 
Lin SR, Lee YJ, Tsai JH.  Mutations of the p53 gene in human functional adrenal neoplasms. J Clin Endocrinol Metab. 1994; 78.483-91
CrossRef
 
Liu J, Kahri AI, Heikkila P, Voutilainen R.  Ribonucleic acid expression of the clustered imprinted genes, p57KIP2, insulin-growth factor II, and H19, in adrenal tumors and cultured adrenal cells. J Clin Endocrinol Metab. 1997; 82.1766-71
CrossRef
 
Hatada I, Inazawa J, Abe T, Nakayama M, Kaneko Y, Jinno Y, et al..  Genomic imprinting of human p57KIP2 and its reduced expression in Wilms' tumors. Hum Mol Genet. 1996; 5.783-8
CrossRef
 
Gicquel C, Raffin-Sanson ML, Gaston V, Bertagna X, Plouin PF, Schlumberger M, et al..  Structural and functional abnormalities at 11p15 are associated with the malignant phenotype in sporadic adrenocortical tumors: study on a series of 82 tumors. J Clin Endocrinol Metab. 1997; 82.2559-65
CrossRef
 
Clouston WM, Cannell GC, Fryar BG, Searle JW, Martin NI, Mortimer RH.  Virilizing adrenal adenoma in an adult with the Beckwith-Wiedemann syndrome: paradoxical response to dexamethasone. Clin Endocrinol Oxf. 1989; 31.467-73
CrossRef
 
Kleihues P, Schauble B, zur Hausen A, Esteve J, Ohgaki H.  Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol. 1997; 150.1-13
 
Wagner J, Portwine C, Rabin K, Leclerc JM, Narod SA, Malkin D.  High frequency of germline p53 mutations in childhood adrenocortical cancer. J Natl Cancer Inst. 1994; 86.1707-10
CrossRef
 
Sameshima Y, Tsunematsu Y, Watanabe S, Tsukamoto T, Kawa-ha K, Hirata Y, et al..  Detection of novel germ-line p53 mutations in diverse-cancer-prone families identified by selecting patients with childhood adrenocortical carcinoma. J Natl Cancer Inst. 1992; 84.703-7
CrossRef
 
Reincke M, Karl M, Travis WH, Mastorakos G, Allolio B, Linehan HM, et al..  p53 mutations in human adrenocortical neoplasms: immunohistochemical and molecular studies. J Clin Endocrinol Metab. 1994; 78.790-4
CrossRef
 
Figuereido BC, Stratakis CA, Sandrini R, DeLacerda L, Pianovski MA, Giatzakis C, et al..  Comparative genomic hybridization (CGH) analysis of adrenocortical tumors in childhood. J Clin Endocrinol Metab. 1999; 84.1116-21
CrossRef
 
Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, et al..  Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992; 258.818-21
CrossRef
 
du Manoir S, Speicher M, Joos S, Schrock E, Popp S, Dohner H, et al..  Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet. 1993; 90.590-610
 
Kjellman M, Kallioniemi OP, Karhu R, Hoog A, Farnebo LO, Auer G, et al..  Genetic aberrations in adrenocortical tumors detected using comparative genomic hybridization correlate with tumor size and malignancy. Cancer Res. 1996; 56.4219-23
 
Stratakis CA, Carney JA, Lin JP, Papanicolaou DA, Karl M, Kastner DL, et al..  Carney complex, a familial multiple neoplasia and lentiginosis syndrome. Analysis of 11 kindreds and linkage to the short arm of chromosome 2. J Clin Invest. 1996; 97.599-607
 
Casey M, Mah C, Merliss AD, Kirschner LS, Taymans SE, Denio AE, et al..  Identification of a novel genetic locus for familial cardiac myxomas and Carney complex. Circulation. 1998; 98.2560-6
CrossRef
 
Torpy DJ, Stratakis CA, Gordon RD.  Linkage analysis of familial hyperaldosteronism type II—absence of linkage to the gene encoding the angiotensin II receptor type I [Letter]. J Clin Endocrinol Metab. 1998; 83.1046
CrossRef
 
Chandrasekharappa SC, Guru SC, Manickam P, Olufemi SE, Collins FS, Emmert-Buck MR, et al..  Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science. 1997; 276.404-7
CrossRef
 
Skogseid B, Rastad J, Gobl A, Larsson C, Backlin K, Juhlin C, et al..  Adrenal lesion in multiple endocrine neoplasia type 1. Surgery. 1995; 118.1077-82
CrossRef
 
Marx S, Spiegel AM, Skarulis MC, Doppman JL, Collins FS, Liotta LA.  Multiple endocrine neoplasia type 1: clinical and genetic topics. Ann Intern Med. 1998; 129.484-94
CrossRef
 
Wenig BM, Heffess CS, Adair CF.  Atlas of Endocrine Pathology. Philadelphia: WB Saunders; 1997.272-87
 
Angeli A, Osella G, Ali A, Terzolo M.  Adrenal incidentaloma: an overview of clinical and epidemiological data from the National Italian Study Group. Horm Res. 1997; 47.279-83
CrossRef
 
Kasperlik-Zaluska AA, Roslonowska E, Slowinska-Srzednicka J, Migdalska B, Jeske W, Makowska A, et al..  Incidentally discovered adrenal mass (incidentaloma): investigation and management of 208 patients. Clin Endocrinol Oxf. 1997; 46.29-37
CrossRef
 
Barzon L, Scaroni C, Sonino N, Fallo F, Gregianin M, Macri C, et al..  Incidentally discovered adrenal tumors: endocrine and scintigraphic correlates. J Clin Endocrinol Metab. 1998; 83.55-62
CrossRef
 
Terzolo M, Ali A, Osella G, Mazza E.  Prevalence of adrenal carcinoma among incidentally discovered adrenal masses. A retrospective study from 1989 to 1994. Gruppo Piemontese Incidentalomi Surrenalici. Arch Surg. 1997; 132.914-9
CrossRef
 
Mantero F, Masini AM, Opocher G, Giovagnetti M, Arnaldi G.  Adrenal incidentaloma: an overview of hormonal data from the National Italian Study Group. Horm Res. 1997; 47.284-9
CrossRef
 
Bondanelli M, Campo M, Trasforini G, Ambrosio MR, Zatelli MC, Franceschetti P, et al..  Evaluation of hormonal function in a series of incidentally discovered adrenal masses. Metabolism. 1997; 46.107-13
CrossRef
 
Streeten DH, Tomycz N, Anderson GH.  Reliability of screening methods for the diagnosis of primary aldosteronism. Am J Med. 1979; 67.403-13
CrossRef
 
Lipsett MB, Hertz R, Ross GT.  Clinical and pathophysiologic aspects of adrenocortical carcinoma. Am J Med. 1963; 35.374
CrossRef
 
Conn JW.  Primary aldosteronism, a new clinical syndrome. J Lab Clin Med. 1955; 45.3-17
 
Biglieri EG.  Primary aldosteronism. Curr Ther Endocrinol Metab. 1997; 6.170-2
 
Blumenfeld JD, Sealey JE, Schlussel Y, Vaughan ED Jr, Sos TA, Atlas SA, et al..  Diagnosis and treatment of primary hyperaldosteronism. Ann Intern Med. 1994; 121.877-85
CrossRef
 
Melby JC.  Diagnosis of hyperaldosteronism. Endocrinol Metab Clin North Am. 1991; 20.247-55
 
Kruger C, Rauh M, Dorr HG.  Immunoreactive renin concentrations in healthy children from birth to adolescence. Clin Chim Acta. 1998; 274.15-27
CrossRef
 
Kaplan NM.  Endocrine hypertension. In: Wilson JD, Foster DW, eds. Williams Textbook of Endocrinology. 8th ed. Philadelphia: WB Saunders; 1992:707-31.
 
Gordon RD, Stowasser M, Tunny TJ, Klemm SA, Rutherford JC.  High incidence of primary aldosteronism in 199 patients referred with hypertension. Clin Exp Pharmacol Physiol. 1994; 21.315-8
CrossRef
 
Ferriss JB, Beevers DG, Brown JJ, Davies DL, Fraser R, Lever AF, et al..  Clinical, biochemical and pathological features of low-renin (“primary“) hyperaldosteronism. Am Heart J. 1978; 95.375-88
CrossRef
 
Edwards CR.  Primary mineralocorticoid excess syndromes. In: DeGroot LJ, ed. Endocrinology. 3d ed. Philadelphia: WB Saunders; 1995:1775-803.
 
Gordon RD.  Primary aldosteronism. J Endocrinol Invest. 1995; 18.495-511
 
Young WF Jr, Klee GG.  Primary aldosteronism. Diagnostic evaluation. Endocrinol Metab Clin North Am. 1988; 17.367-95
 
Jonsson JR, Klemm SA, Tunny TJ, Stowasser M, Gordon RD.  A new genetic test for familial hyperaldosteronism type 1 aids in the detection of curable hypertension. Biochem Biophys Res Commun. 1995; 207.565-71
CrossRef
 
Meier CA, Biller BM.  Clinical and biochemical evaluation of Cushing's syndrome. Endocrinol Metab Clin North Am. 1997; 26.741-62
CrossRef
 
Chrousos GP, Schuermeyer T, Doppman J, Oldfield EH, Schulte HM, Gold PW, et al..  NIH conference. Clinical applications of corticotropin-releasing factor. Ann Intern Med. 1985; 102.344-58
CrossRef
 
Flack M, Chrousos GP.  Neoplasms of the adrenal cortex. In: Holland JF, Bust RF, Morton DL, Frei EI, Kufe DW, Weischelbaum RK, eds. Cancer Medicine. 4th ed. Baltimore: Williams & Wilkins; 1996:1563-70.
 
Mendonca BB, Lucon AM, Menezes CA, Saldanha LB, Latronico AC, Zerbini C, et al..  Clinical, hormonal and pathological findings in a comparative study of adrenal cortical neoplasms in childhood and adulthood. J Urol. 1995; 154.2004-9
CrossRef
 
Freeman D.  Steroid hormone-producing tumors in man. Endocr Rev. 1986; 7.204-20
CrossRef
 
Crapo L.  Cushing's syndrome: a review of diagnostic tests. Metabolism. 1979; 28.955-77
CrossRef
 
Kaye TB, Crapo L.  The Cushing syndrome: an update of diagnostic tests. Ann Intern Med. 1990; 112.434-44
CrossRef
 
Nieman LK, Oldfield EH, Wesley R, Chrousos GP, Loriaux DL, Cutler GB Jr.  A simplified morning ovine corticotropin-releasing hormone stimulation test for the differential diagnosis of adrenocorticotropin-dependent Cushing's syndrome. J Clin Endocrinol Metab. 1993; 77.1308-12
CrossRef
 
Orth DN.  Cushing's syndrome. N Engl J Med. 1995; 332.791-803
CrossRef
 
Luton JP, Cerdas S, Billaud L, Thomas G, Guilhaume B, Bertagna X, et al..  Clinical features of adrenocortical carcinoma, prognostic factors, and the effect of mitotane therapy. N Engl J Med. 1990; 322.1195-201
CrossRef
 
Herrera MF, Grant CS, van Heerden JA, Sheedy PF, Ilstrup DM.  Incidentally discovered adrenal tumors: an institutional perspective. Surgery. 1991; 110.1014-21
 
Lenders JW, Keiser HR, Goldstein DS, Willemsen JJ, Friberg P, Jacobs MC, et al..  Plasma metanephrines in the diagnosis of pheochromocytoma. Ann Intern Med. 1995; 123.101-9
CrossRef
 
Doppman JL.  Problems in endocrinologic imaging. Endocrinol Metab Clin North Am. 1997; 26.973-91
CrossRef
 
Korobkin M.  Overview of adrenal imagine/adrenal CT. Urol Radiol. 1989; 11.221-6
CrossRef
 
Dunnick NR.  Hanson lecture. Adrenal imaging: current status. AJR Am J Roentgenol. 1990; 154.927-36
CrossRef
 
Shapiro B, Fig LM, Gross MD, Khafagi F.  Contributions of nuclear endocrinology to the diagnosis of adrenal tumors. Recent Results Cancer Res. 1990; 118.113-38
 
Korobkin M, Lombardi TJ, Aisen AM, Francis IR, Quint LE, Dunnick NR, et al..  Characterization of adrenal masses with chemical shift and gadolinium-enhanced MR imaging. Radiology. 1995; 197.411-8
 
Outwater EK, Siegelman ES, Radecki PD, Piccoli CW, Mitchell DG.  Distinction between benign and malignant adrenal masses: value of T1-weighted chemical-shift MR imaging. AJR Am J Roentgenol. 1995; 165.579-83
CrossRef
 
Barzilay JI, Pazianos AG.  Adrenocortical carcinoma. Urol Clin North Am. 1989; 16.457-68
 
Young WF Jr.  Pheochromocytoma and primary aldosteronism: diagnostic approaches. Endocrinol Metab Clin North Am. 1997; 26.801-27
CrossRef
 
Doppman JL, Gill JR Jr.  Hyperaldosteronism: sampling the adrenal veins. Radiology. 1996; 198.309-12
 
Schteingart D.  Treating adrenal cancer. Endocrinologist. 1992; 2.149-57
CrossRef
 
Chee C, Ravinthiran T, Cheng C.  Laparoscopic adrenalectomy: experience with transabdominal and retroperitoneal approaches. Urology. 1998; 51.29-32
CrossRef
 
Hansen P, Bax T, Swanstrom L.  Laparoscopic adrenalectomy: history, indications, and current techniques for a minimally invasive approach to adrenal pathology. Endoscopy. 1997; 29.309-14
CrossRef
 
Korman JE, Ho T, Hiatt JR, Phillips EH.  Comparison of laparoscopic and open adrenalectomy. Am Surg. 1997; 63.908-12
 
Miyake O, Yoshimura K, Yoshioka T, Honda M, Kokado Y, Miki T, et al..  Laparoscopic adrenalectomy. Comparison of the transperitoneal and retroperitoneal approach. Eur Urol. 1998; 33.303-7
CrossRef
 
Walz MK, Peitgen K, Saller B, Giebler RM, Lederbogen S, Nimtz K, et al..  Subtotal adrenalectomy by the posterior retroperitoneoscopic approach. World J Surg. 1998; 22.621-6
CrossRef
 
Gagner M, Pomp A, Heniford BT, Pharand D, Lacroix A.  Laparoscopic adrenalectomy: lessons learned from 100 consecutive procedures. Ann Surg. 1997; 226.238-46
CrossRef
 
Schell SR, Talamini MA, Udelsman R.  Laparoscopic adrenalectomy. Adv Surg. 1997; 31.333-50
 
Pommier RF, Brennan MF.  An eleven-year experience with adrenocortical carcinoma. Surgery. 1992; 112.963-70
 
Khorram-Manesh A, Ahlman H, Jansson S, Wangberg B, Nilsson O, Jakobsson CE, et al..  Adrenocortical carcinoma: surgery and mitotane for treatment and steroid profiles for follow-up. World J Surg. 1998; 22.605-11
CrossRef
 

Letters

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Comments

Submit a Comment
Submit a Comment

Summary for Patients

Clinical Slide Sets

Terms of Use

The In the Clinic® slide sets are owned and copyrighted by the American College of Physicians (ACP). All text, graphics, trademarks, and other intellectual property incorporated into the slide sets remain the sole and exclusive property of the ACP. The slide sets may be used only by the person who downloads or purchases them and only for the purpose of presenting them during not-for-profit educational activities. Users may incorporate the entire slide set or selected individual slides into their own teaching presentations but may not alter the content of the slides in any way or remove the ACP copyright notice. Users may make print copies for use as hand-outs for the audience the user is personally addressing but may not otherwise reproduce or distribute the slides by any means or media, including but not limited to sending them as e-mail attachments, posting them on Internet or Intranet sites, publishing them in meeting proceedings, or making them available for sale or distribution in any unauthorized form, without the express written permission of the ACP. Unauthorized use of the In the Clinic slide sets will constitute copyright infringement.

Toolkit

Want to Subscribe?

Learn more about subscription options

Advertisement
Forgot your password?
Enter your username and email address. We'll send you a reminder to the email address on record.
(Required)
(Required)