0
Conferences |

Pathogenesis and Treatment of HIV-Associated Renal Diseases: Lessons from Clinical and Animal Studies, Molecular Pathologic Correlations, and Genetic Investigations FREE

Moderator: Paul L. Kimmel, MD; Discussants: Laura Barisoni, MD; and Jeffrey B. Kopp, MD
[+] Article and Author Information

From George Washington University Medical Center, Washington, DC, and National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.


Ann Intern Med. 2003;139(3):214-226. doi:10.7326/0003-4819-139-3-200308050-00019
Text Size: A A A

Dr. Paul L. Kimmel (Division of Hematologic, Kidney and Urologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health [NIH], Bethesda, Maryland, and George Washington University Medical Center, Washington, DC): Renal disease associated with AIDS was first reported in 1984 and 1985 in New York, New York, and Miami, Florida (13). Rao and colleagues from Brooklyn, New York, identified a single renal disease, focal segmental glomerulosclerosis, associated with AIDS (1), while other reports from Miami and Manhattan emphasized a spectrum of glomerular abnormalities and various renal syndromes seen in patients with AIDS (23).

A variety of renal syndromes can complicate the course of HIV infection (4). Clinical strategies involve diagnosing the type of renal disease and instituting appropriate therapy. Research needs involve understanding the pathogenesis of individual renal diseases that complicate HIV infection, understanding the relationship of these diseases to infection and its treatment, and devising treatments for patients with chronic kidney disease.

Acute Renal Failure

Although common causes of acute renal failure, as in uninfected hospitalized patients, are prerenal azotemia and acute tubular necrosis (56), recent studies highlight an increased incidence of HIV-associated thrombotic microangiopathies and rhabdomyolysis (79); the latter may stem from statin use in patients with complications of antiretroviral therapy (1014). Opportunistic infections complicating the viral illness, such as tuberculosis, cytomegalovirus infection, and fungal infections, and complications, such as lymphoma and Kaposi sarcoma, are associated with structural anatomic abnormalities, renal insufficiency, and acute renal failure (6, 8). Chronic kidney disease, such as thrombotic thrombocytopenic purpura, associated with HIV infection, can also mimic acute renal failure (4, 6, 15). Drugs used to treat superinfections associated with HIV infection (for example, antibiotics, antifungals, and antivirals) and antiretroviral drugs to treat HIV infection (for example, indinavir and ritonavir) (16) are associated with the development of interstitial nephritis and nephrotoxicity. Antibiotics commonly cause acute interstitial nephritis, while aminoglycosides, amphotericin, and foscarnet cause acute tubular necrosis. The nucleoside phosphonate analogues adefovir and cidofovir cause proximal renal tubular injury (16). Abacavir (17) and tenofovir (1819) are implicated in the development of tubular injury and renal failure. Sulfadiazine, acyclovir, and indinavir cause crystalluria and, occasionally, intrarenal obstruction (20). Indinavir is associated with several nephrologic syndromes, such as dysuria, acute and chronic interstitial nephritis (including tubular atrophy and interstitial fibrosis), and nephrolithiasis; nelfinavir has been linked to the development of nephrolithiasis (10, 16, 2123). Leukocyturia is associated with progressive renal disease in patients treated with indinavir (22, 24).

Chronic Renal Disease: End-Stage Renal Disease

Currently, HIV-infected patients make up approximately 1% to 2% of the population with end-stage renal disease (2527) (Figure 1). The incidence geographically reflects the national distribution of AIDS and HIV infection (2526). The prevalence of HIV infection in the dialysis program is probably higher because of confidentiality issues and the lack of biopsies in most patients. During the late 1980s, the number of HIV-infected patients in the dialysis program was low but had tripled from 1985 to 1988 (25, 27) (Figure 1). However, subsets of the population, such as young black men, were at particularly high risk for developing nephropathy (2829). The relative risk for end-stage renal disease from AIDS or an AIDS-defining diagnosis from 1995 to 1999 is 0.39 for women compared with men (Eggers PW. Personal communication). Risk between men and women does not vary by race or ethnicity, but black patients had a relative risk of 51.1 for developing end-stage renal disease from AIDS or an AIDS-defining diagnosis compared with white patients. Although early work suggested a rapidly increasing number of HIV-infected patients (28), the number and proportion of patients undergoing dialysis who had renal disease attributed to HIV infection have stabilized or are decreasing (2527) (Figure 1). Between 1995 and 1999, the number of new patients with HIV infection in the U.S. hemodialysis program ranged from 1131 to 1187 and did not rise proportionately with the increase in HIV infection or the U.S. dialysis population (26).

Grahic Jump Location
Figure 1.
Percentage of HIV-infected patients receiving hemodialysis in the U.S. hemodialysis program

. Data obtained from the Centers for Disease Control and Prevention. Reproduced with permission from reference 27, Kidney Int. 2003; 63:1618-31.

Grahic Jump Location
Chronic Renal Failure

The prevalence of renal disease related to HIV infection is unknown, rendering epidemiologic assessments problematic (29). The designation of chronic kidney disease in HIV-infected patients depends on the screening techniques used (30). Data before (3031) and after (32) the introduction of highly active antiretroviral therapy suggest a prevalence of abnormal proteinuria of about one third, using various criteria. A European autopsy study of HIV-infected patients, most of whom had developed AIDS, showed proteinuria in 18%, nephropathy in 36%, and renal pathology in 43% (31). Less than 10% of a cohort of HIV-infected women had proteinuria or renal insufficiency at baseline, but 14% developed kidney disease during a mean 21-month follow-up (33). In a large study of HIV-infected women, viral load and stage of infection were associated with proteinuria and progressive nephropathy but presence and type of antiretroviral therapy were not (32).

Three types of chronic kidney disease are directly caused by HIV infection: HIV-associated thrombotic microangiopathies, HIV immune-mediated renal diseases, and classic HIV-associated nephropathy (4, 27). Because of improved understanding of the HIV life cycle, advances in molecular biological tissue evaluation, and the development of relevant animal models, stronger pathogenic inferences can be made about HIV-associated nephropathies compared with other renal diseases. Elucidating the pathogenesis of HIV-associated renal diseases also permits better understanding of pathogenic mechanisms underlying more common renal diseases.

The thrombotic microangiopathies, hemolytic uremic syndrome and thrombotic thrombocytopenic purpura, are thought to occur because of endothelial cell dysfunction partially mediated by HIV proteins (4, 15, 3436). Renal cellular apoptosis (4, 15, 34, 37), as well as inhibition of von Willebrand factor–cleaving protease (38), may play key pathogenic roles. The disease spectrum is characterized by a pentad of findings with variable expression: fever, neurologic dysfunction, thrombocytopenia, microangiopathic hemolytic anemia, and renal insufficiency with hematuria. High-level proteinuria is uncommon, which helps differentiate these syndromes from immune-mediated diseases and HIV-associated nephropathy (4). However, nephrotic-range proteinuria does occur (3941), perhaps because of the coexistence of two diseases (41). Although spontaneous remissions occur (40), the renal disease often resists treatment. Treatment with glucocorticoids (4142), plasma and immunoglobulin infusions, plasmapheresis, antiplatelet drugs, vincristine, and splenectomy has variable success (15, 27), but lack of controlled trials precludes evidence-based recommendations.

Autopsy and biopsy series in HIV-infected patients with renal disease have established a prevalence of proliferative glomerulonephritis of 10% to 80% (4249). Immune complex glomerulonephritis associated with HIV infection has several different histologic presentations (43, 49), including proliferative, lupus-like, and mixed proliferative or sclerotic forms (43). Other types of glomerulonephritis, such as membranoproliferative glomerulonephritis, membranous nephropathy, fibrillary and immunotactoid glomerulonephritis, and postinfectious glomerulonephritis, also occur in HIV-infected patients (43, 4546, 4952). The renal disease, however, may not be intimately associated with HIV infection. Rather, it may be a consequence of coexistent infection, such as renal disease related to hepatitis C or B (49, 5355), a response to infection in patients with disordered humoral immunity (49, 56), or a coincidental finding (49). A renal biopsy with immunochemical and molecular biological analyses is necessary to make a precise etiologic diagnosis, but this is usually not possible in clinical practice. By using classic research techniques, we showed that the immune response to HIV infection could culminate in specific HIV immune-mediated glomerulonephritis (57).

IgA nephropathy occurs in HIV-infected patients (4, 49, 5859). Its incidence and prevalence are unknown. In an autopsy study, 7.75% of persons with AIDS had diffuse mesangial IgA deposits (60). IgA nephropathy in HIV infection seems to be relatively common in men of European descent but uncommon in people of African descent (27, 49, 60), as in uninfected populations (61). We showed that IgA nephropathy in two patients was the result of an autoimmune reaction to HIV peptides (59). HIV-associated IgA nephropathy is generally indolent, characterized by proteinuria, hematuria, and mild renal insufficiency.

European and Asian case series of patients with HIV infection and renal disease who underwent biopsies or autopsies show that patients of European descent typically have glomerulonephritis, while patients of African descent in the same centers usually have HIV-associated nephropathy (31, 43, 4549). These disparities and the clustering of renal disease in families of patients with HIV infection and end-stage renal disease (62) suggest a genetic component for developing both HIV-associated immune-mediated renal diseases and HIV-associated nephropathy.

Remarkable responses have been reported in patients with immune-mediated renal diseases treated with angiotensin-converting enzyme (ACE) inhibitors, glucocorticoids, or antiretroviral therapy (51, 6365), but properly designed randomized, controlled trials have not assessed such therapies.

Although some researchers suggest that HIV-associated nephropathy comprises a spectrum of mesangial diseases and matrix production disorders (66), variants of focal segmental glomerulosclerosis, including collapsing glomerulopathy, were reported in most HIV-infected patients with renal disease who underwent renal biopsy (4, 27, 6768). HIV-associated nephropathy is characterized by large, echogenic kidneys on ultrasonography, nephrotic-range proteinuria, and renal insufficiency. Although it has been argued that HIV-associated nephropathy is a late complication (67, 69), it can clearly occur at any stage of HIV infection and is occasionally the presenting manifestation of infection (7072). The pathologic findings are pathognomonic (6668, 7374). Although clinical findings are suggestive, a biopsy is necessary for diagnosis. Before the introduction of highly active antiretroviral therapy in 1996, HIV-associated nephropathy was typified by an extremely rapid progression that was thought to be inexorable.

Pathogenic Considerations

The pathogenesis of HIV-associated nephropathy is unknown, but three lines of evidence definitively link the disease to viral infection: 1) the finding of HIV-associated nephropathy in infected infants of HIV-infected mothers [75]; 2) the reproduction of the disease in HIV-1 transgenic mice, rats, and simian models of retroviral infection [15, 7679]; and 3) reports of reversal of renal histologic and laboratory abnormalities in a small set of patients with biopsy-proven HIV-associated nephropathy after highly active antiretroviral therapy (70, 72).

We showed the ubiquitous presence of HIV DNA in renal tissue of HIV-infected patients (44), but only recently has human renal viral infection been demonstrated by the localization of HIV-1 messenger RNA in renal tissue, specifically glomerular and tubular epithelial cells (72, 8082). However, proteinuria is present in less than half of HIV-infected patients (3033), and advanced stages of chronic kidney disease are an uncommon complication of HIV infection (4, 27, 6667). Therefore, factors other than simple infection of renal cells or the infiltration of infected immune cells in renal tissue probably mediate the expression of nephropathy (4, 44). Large-scale clinical epidemiologic and pathologic studies of the relationship of renal HIV infection to the expression of disease, with the proper positive and negative controls, remain to be performed.

Cytokines and growth factors, produced by infiltrating immune or renal cells, undoubtedly play roles in mediating disease pathogenesis in susceptible hosts through effects on renal cells or the viral life cycle. The presence of an immune cell infiltrate in the renal tissue of patients with HIV-associated nephropathy remains unexplained, but clinicopathologic data implicate the macrophage in the pathogenesis of HIV-associated nephropathy (83). Chemokines mediate infiltration of tissue by monocytes, macrophages, lymphocytes, neutrophils, and eosinophils and have been implicated in nephropathogenesis (84). Certain chemokine receptors function as second receptors for the engagement of HIV virions and the cell membrane (85). Mutations in chemokine receptor proteins are associated with resistance to HIV infection and improved prognosis (86). Chemokine receptor RNA has been detected in renal tissue (84, 8788), but detecting chemokine receptors in HIV-associated nephropathy tissue is limited to infiltrating immune cells (89). We investigated the relationship of tissue transforming growth factor-β (90) and chemokines (91) to the presence of nephropathy by comparing biopsy specimens from patients with HIV-associated nephropathy, HIV-associated glomerulonephritis, and idiopathic focal glomerulosclerosis without HIV infection, with appropriate controls. Chemokine levels were increased in renal tissue from patients with HIV infection regardless of the presence of renal disease (91). This finding suggests that chemokines might help prevent productive infection of renal cells by interacting with renal chemokine receptors, thereby decreasing the number of renal cells infected and the subsequent expression of nephropathy. Tissue proteins associated with antigen presentation and response to infection, including MHC class II proteins, interferon-α, and interferon-γ receptor protein, were specifically associated with HIV-associated nephropathy, suggesting that genetic susceptibility, the host response, and a microenvironment characterized by immune activation are critical to nephropathogenesis (Figure 2). The finding of high levels of interferon-α is consistent with the pathologic feature of tubuloreticular inclusions (4, 68, 7374, 91). Human (92) and animal (93) studies suggest that apoptosis, perhaps mediated by HIV proteins, plays an important role in nephropathogenesis. A complex interrelationship probably exists among renal infection, effects on renal cell matrix biology, cytokine, growth factor, and chemokine responses, mediated by host factors (including genetic susceptibility and socioeconomic status) leading to the development of HIV-associated nephropathy.

Grahic Jump Location
Figure 2.
Interferon-α protein expression in renal tissue compartmentsPP

. Interferon-α protein was assessed in microdissected renal glomerular and interstitial tissue from 6 patients with HIV-associated nephropathy, 4 patients with HIV-associated immune-mediated glomerulonephritis, 3 HIV-infected patients who died without autopsy evidence of renal disease, 9 patients with idiopathic focal segmental glomerulosclerosis in the absence of HIV infection, and renal tissue of uninfected patients without clinical or pathologic evidence of renal disease by high-performance immunoaffinity chromatography and chemiluminescent enzyme-linked immunosorbent assay. Renal interstitial and glomerular interferon-α protein levels were significantly higher in renal tissue from patients with HIV-associated nephropathy than in tissue from all other groups ( = 0.002; analysis of variance). A similar pattern was noted for nonpolymorphic major histocompatibility II locus and interferon-γ receptor protein levels. Error bars indicate SEs. * = 0.002.

Grahic Jump Location
Treatment of HIV-Associated Nephropathy

No rigorously controlled randomized trials have evaluated treatment of HIV-associated nephropathy (27, 94). Glucocorticoid therapy produced impressive decreases in urinary protein excretion and improved renal function (95), but treatment before the introduction of highly active antiretroviral therapy was associated with a high prevalence of serious complications (9497). More recent studies suggest that steroid treatment is associated with improved renal functional outcomes and less morbidity, perhaps secondary to concomitant highly active antiretroviral therapy (9698). Two studies completed before the introduction of highly active antiretroviral therapies suggest that ACE inhibitors have clinically significant effects on renal survival (99100). This effect was confirmed in the HIV-1 transgenic mouse (101). The mechanism of action of these drugs is unknown. Steroids may decrease the associated component of interstitial inflammation (41, 94), while ACE inhibitors may affect interstitial immune cellular function and the generation of tissue cytokines (4, 94, 99).

Antiretroviral drug therapy has been associated with beneficial effects on renal functional status, morbidity, and mortality (4, 27, 94, 102104). In patients treated with captopril, use of antiretrovirals was independently associated with improved renal survival (99). Two dramatic case reports suggest that treating patients with HIV-associated nephropathy with highly active antiretroviral therapy may result in remission of both renal pathologic and functional abnormalities (70, 72), although the kidney may remain a reservoir of infection (72, 8182). Outcomes of HIV-infected patients treated with hemodialysis and peritoneal dialysis have improved and the incidence of HIV infection in the dialysis program seems to have decreased concomitantly with the introduction in 1996 of highly active antiretroviral therapy (2527, 105106) (Figure 1). Although the immunosuppression of HIV-infected patients is a concern, the prospect of transplantation for carefully selected HIV-infected patients is exciting but controversial (27, 107111). Some of the immunosuppressive medications used in clinical transplantation may have antiretroviral effects (27, 109). Successful transplantation in HIV-infected patients who have received highly active antiretroviral therapy and have undetectable viral loads has been reported in abstract form, and a multicenter study is in progress (27, 108). Murphy and colleagues transplanted kidneys in 23 patients who were receiving antiretroviral therapy, had CD4 cell counts greater than 0.200 × 109 cells/L, and had undetectable viral loads; the graft survival rate was 87% (27, 108).

We believe that HIV-infected patients with chronic kidney disease should be assessed by using standard clinical tools. The absence of nephrotic-range proteinuria suggests a diagnosis other than HIV-associated nephropathy or glomeulonephritis. The peripheral smear should be examined in patients with acute or chronic renal disease who have thrombocytopenia or hemolysis. A renal biopsy is necessary to diagnose HIV-associated nephropathy. This may be a clinically significant decision for patients in whom highly active retroviral therapy would otherwise be deferred (112) since antiretroviral therapy can improve outcomes, but renal diseases unrelated to HIV infection would not be expected to respond (4, 27, 44, 113). Although this recommendation is not substantiated by evidence from clinical trials, patients with chronic kidney disease associated with HIV infection should be treated with highly active antiretroviral therapy unless it is contraindicated. A good rationale exists for ACE inhibitors for patients who do not have a dramatic response to such therapy, although the effects of such combinations have not been evaluated prospectively. In selected patients whose viral infection is controlled, the addition of glucocorticoids may improve renal function. Further study is necessary to evaluate the results of combinations of antiretroviral therapy, drugs that interrupt the renin–angiotensin axis, and steroids in patients with HIV-associated renal diseases. Renal transplantation is an option for selected patients in controlled trials.

Dr. Laura Barisoni (Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, and The Johns Hopkins University, Baltimore, Maryland): The appropriate classification of focal segmental glomerulosclerosis is controversial and evolving. Collapsing glomerulopathy represents a subtype of focal segmental glomerulosclerosis, distinguished by one or more glomeruli manifesting segmental or global collapse and podocyte hypertrophy or hyperplasia (114117). A common associated feature is severe tubular injury and interstitial inflammatory infiltration out of proportion to the glomerular disease. Collapsing glomerulopathy may be associated with HIV-1 infection, in which case it is termed HIV-associated nephropathy, or it may occur without known viral infection. Although idiopathic collapsing glomerulopathy and HIV-associated nephropathy are similar, HIV-associated nephropathy can be distinguished by the presence of tubular microcysts and glomerular endothelial tubuloreticular inclusions (however, these are not always present). Both forms of collapsing glomerulopathy are believed to share common pathogenic mechanisms related to dysregulation of podocyte phenotype (118119).

Like collapsing glomerulopathy, HIV-associated nephropathy is characterized by wrinkling and folding of the glomerular basement membranes (Figure 3, part A). The segmental or global collapse of the glomerular basement membrane is associated with increases in the Bowman space. Often this space is partially or globally occupied by large podocytes, with pale cytoplasm containing protein-reabsorption droplets. These cells are arranged in layers around the collapsed areas, forming pseudocrescents. Glomerular damage is associated with tubular atrophy and flattening and regeneration of the tubular epithelium (Figure 3, part B). Interstitial inflammation and fibrosis are generally severe.

Grahic Jump Location
Figure 3.
Histopathologic characteristics of HIV-associated nephropathy in humans and transgenic mice.A.B.C.PasterisksD and E.DEDEF and G.F++Gbrown

Human HIV-associated nephropathy: A glomerulus shows global collapse of capillary lumina. The glomerular basement membranes are wrinkled and folded, and the urinary space is occupied by proliferating podocytes forming pseudocrescents. Numerous protein reabsorption droplets are present in the podocyte cytoplasm, and this cytoplasm is more abundant than normal (silver staining; original magnification, ×60). Tubulointerstitial damage includes interstitial fibrosis with inflammation, tubular atrophy, and microcysts. Eosinophilic casts are present in the dilated tubular lumina (silver staining; original magnification, ×40). Ultrastructural analysis shows a collapsed glomerular capillary. Note the wrinkling of the glomerular basement membrane. Podocytes ( ) have lost foot processes and primary processes, and their cell body sits directly on the glomerular basement membrane. There is focal detachment of podocytes from the underlying glomerular basement membrane and new matrix deposition ( ). (Original magnification, ×8000.) Membrane nephropathy in HIV-1 transgenic mice: Immunostaining for synaptopodin in wild-type ( ) and HIV-1 transgenic mice ( ): All the glomeruli are stained for synaptopodin in kidneys from wild type ( ). No staining is noted in the kidney of the HIV-1 transgenic mice ( ). (Original magnification, ×20.) Immunostaining for adducin ( ) and Na , K –adenosine triphosphatase ( ) in HIV-1 transgenic mice: No basolateral staining is noted in this dilated tubule, whereas the nondilated tubules display a delicate basolateral staining ( ). (Original magnification, ×40.).

Grahic Jump Location

In many glomerular diseases, proteinuria is associated with podocyte foot process effacement and reorganization and with condensation of the actin cytoskeleton; the latter manifests as dense intracytoplasmic structures lying adjacent to the glomerular basement membrane. HIV-associated nephropathy podocyte structure is different (Figure 3, part C). Podocytes lose their foot and primary cytoplasmic processes, so the cell body rests directly on the glomerular basement membrane. The actin cytoskeleton is essentially absent. These features resemble those of immature podocytes in the developing glomerulus, supporting the hypothesis that cellular dedifferentiation has occurred. In some cases, podocytes detach and new extracellular matrix deposits fill the resulting space (118).

In all forms of focal glomerulosclerosis and in HIV-associated nephropathy, expression of maturity markers, such as synaptopodin, glomerular epithelial protein 1, podocalyxin, C3b receptor, and common acute lymphoblastic leukemia antigen, is lost in the areas of sclerosis or collapse (Figure 3, parts D and E) (118). In other forms of focal glomerulosclerosis, this phenomenon may result from parietal epithelial cell migration from the Bowman capsule. In HIV-associated nephropathy, this phenomenon may reflect dedifferentiation of podocytes overlying areas of collapse. The loss of actin-based cytoskeleton observed on ultrastructural analysis is reflected by the absence of synaptopodin staining, which also occurs in podocytes overlying noncollapsed glomeruli; this finding suggests that cellular phenotypic alteration precedes glomerular injury. Moreover, podocalyxin, normally expressed in both podocytes and endothelial cells, is lost exclusively in podocytes, suggesting that HIV-associated nephropathy is a selective podocyte disease.

In HIV-associated nephropathy, the podocyte phenotype is not only dedifferentiated but also dysregulated, reflected by loss of expression of Wilm tumor protein 1, a podocyte marker present at all stages of glomerular development (118). In idiopathic collapsing glomerulopathy, dysregulated podocytes may express proteins that are more typically expressed by other cells, such as macrophages, in a process called transdifferentiation (120). Unlike all other diseases characterized by podocyte injury, dysregulated podocytes in patients with HIV-associated nephropathy or idiopathic collapsing glomerulopathy proliferate and also undergo apoptosis (120121). The reentry into the cell cycle coincides with the loss of expression of cyclin D1 and cyclin-dependent kinase inhibitors, p27 and p57, together with reexpression of cyclin A and Ki-67 and the de novo expression of p21 (122).

Podocytes have several functions (123). The podocyte slit diaphragm contributes to the glomerular filtration barrier, limiting urinary albumin and large-molecular-weight protein excretion. Podocytes participate in laying down and remodeling the glomerular basement membrane. Podocytes may have structural functions within the glomerulus, maintaining capillary loop structure against both the ballooning force of hydrostatic pressure and the contractile force of mesangial cells. It is not surprising that dedifferentiated podocytes may fail to perform one or more of these functions. Loss of the slit diaphragms (foot process effacement) is associated with proteinuria. The dedifferentiated podocyte may contribute to glomerular collapse by shifting synthesis from collagen IV α3, α4, and α5 chains, typical of the adult glomerular basement membrane, to those typical of its fetal composition (collagen IV α1 and α2 chains), which are present in the glomerular basement membrane in HIV-associated nephropathy. Finally, the pressure of the expanding podocyte cell mass that makes up a pseudocrescent may contribute to capillary loop collapse (Figure 4).

Grahic Jump Location
Figure 4.
Model for glomerular and tubular cell injury induced by HIV-1

.

Grahic Jump Location

The HIV-1 transgenic mouse model of HIV nephropathy, developed at the NIH, directly linked the expression of HIV-1 proteins to altered cellular phenotype (124). HIV-1 transgenic mice develop a renal disease similar to HIV-associated nephropathy, including focal segmental glomerulosclerosis with glomerular collapse, severe tubulointerstitial damage, and tubular microcysts (76). Tubular epithelial cells lose the expression of proteins, such as Na+, K+–adenosine triphosphatase, and adducin (119) (Figure 3, parts F and G). Two pieces of evidence link HIV gene expression and renal parenchymal changes. In cross-transplant experiments between wild-type and HIV-1 transgenic mice, nephropathy developed only in kidneys transplanted from transgenic into wild-type mice (93). Second, transgene expression was detected in both podocytes and tubular epithelial cells before structural alterations occurred. In renal epithelium, the detection of the transgene is followed by high apoptotic and proliferative indices together with dysregulation of the phenotype, indicating a temporal correlation between HIV-1 expression and nephropathy (121).

HIV-1 gene expression in podocytes and tubular epithelium of multiple nephron segments has been demonstrated in human biopsy specimens (72, 81), suggesting a role of HIV-1 infection in initiating pathogenesis, although the mechanism underlying cellular damage is unknown. To support this hypothesis, recent studies in podocytes derived from HIV-1 transgenic mice indicate a direct effect of HIV-1 gene products on the cell cycle, leading to cellular proliferation (125).

Dr. Jeffrey B. Kopp (Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, NIH): The mechanisms by which lentiviruses induce characteristic glomerular and tubular injury are not well understood, but several important clues to pathogenesis have emerged over the past decade.

Opportunistic renal infections might trigger focal segmental glomerulosclerosis. Although it was suggested that Mycoplasma fermentans might contribute, few recent data support that hypothesis (126). We showed that the monkey polyomavirus simian virus 40 is recovered more frequently from urinary cells of patients with focal glomerulosclerosis, including idiopathic, collapsing, and HIV-associated variants, compared with patients with other kidney diseases or healthy volunteers (127). These data are insufficient, however, to establish a causative link between simian virus 40 infection and HIV-associated nephropathy.

HIV-1 probably infects lymphocytes and macrophages that enter the kidney, which might release inflammatory lymphokines or cytokines and cause renal injury. Biopsy specimens from patients with HIV-associated nephropathy have a striking increase in renal transforming growth factor-β–producing cells compared with specimens from patients with other forms of focal segmental glomerulosclerosis or other inflammatory glomerular diseases (90, 128). Neither study conclusively identified the cells responsible for producing transforming growth factor-β.

Increasing evidence suggests that HIV-1 may infect renal parenchymal cells, producing cytopathic effects such as proliferation or apoptosis. In vitro experiments demonstrated low-level productive infection of cultured tubular epithelial cells (87, 129). Some investigators have reported infection of cultured mesangial cells (130), while others have not (131). The role of the chemokine receptor GPR1 may be critical (132). In vitro infection of human podocytes, however, has not yet been described. Localization of HIV-1 protein and RNA to renal parenchymal cells has been controversial. Both HIV-1 protein and nucleic acid were found in podocytes and tubular epithelium (44, 133). Recently, Klotman and colleagues (72, 8182) developed sensitive in situ hybridization techniques and localized viral RNA and newly retrotranscribed proviral DNA to podocytes and tubular epithelial cells (72, 81). Future work may delineate how HIV-1 infection leads to cellular abnormalities such as proliferation (podocytes) or atrophy and death (tubular epithelial cells).

HIV-1 proteins may directly injure renal parenchymal cells. In humans infected with HIV-1, overt immunodeficiency is not required for development of focal glomerulosclerosis, suggesting that some lentiviral gene product might be responsible for nephropathogenesis. Experiments using HIV-1 transgenic mice show that particular HIV-1 accessory proteins can induce focal segmental glomerulosclerosis and interstitial nephritis (124, 134136) (Table). These features include focal and segmental collapse and solidification of the glomerular capillary tuft, podocyte hyperplasia (but not glomerular endothelial tubuloreticular inclusions), microcystic tubular dilatation, tubular atrophy, mononuclear interstitial cell infiltration, proteinuria, and progressive renal dysfunction. These transgenic mice do not produce virions (since the gag and pol genes are lacking from the transgenes), demonstrating that replicating virus is not required for the induction of murine nephropathy. Two lines of evidence suggest that local renal HIV-1 protein production is critical: Transgenic lines that do not express the transgene in the kidney but express it in other tissues do not develop renal disease (124), and nephropathy follows the transgenic kidney in renal transplant experiments involving transgenic and wild-type mice (93).

Table Jump PlaceholderTable.  HIV-1 Transgenic Mice with Renal Disease

A provisional summary of these data suggests that the viral regulatory or accessory proteins Tat plus viral protein R (Vpr), or Vpr acting alone, may induce focal glomerulosclerosis, and Nef (negative factor for viral replication) may contribute to interstitial nephritis. These viral proteins have complex effects on host cell function. Dissecting the mechanisms of renal injury induced by these proteins is an area for future research. Tat is a transactivating protein that increases viral RNA production. Vpr has many effects on host cells, including G2 cell cycle arrest, regulation of apoptosis, and cytokine production, and acts as a transcriptional coactivator or corepressor, depending on the genetic context. Nef downregulates CD4 expression. In summary, in mice, particular viral regulatory or accessory proteins induce many characteristic functional and histologic changes of HIV-associated nephropathy.

Viral genetic variation might contribute to the epidemiology of HIV-associated nephropathy, explaining why only some patients develop renal disease. Partly because of the relatively high error rate of HIV-1 reverse transcriptase, the HIV-1 genome is highly plastic and many viral quasi-species exist. The env (envelope) gene encodes the transmembrane glycoprotein (gp) 41 and the associated gp120. gp120 first binds CD4, inducing a conformational change in gp120 that facilitates its binding to one of several co-receptor molecules, which function as chemokine receptors in the host. CD4 independent cell infection has also been described. The receptors responsible for viral entry into renal parenchymal cells have not been well characterized. CD4 has not been convincingly demonstrated on any renal parenchymal cell in vivo, although RNA has been reported in cultured tubular epithelial cells. Mesangial cell infection may be dependent on GPR1 (132). Particular viral variants may have mutations in gp120 that facilitate entry into renal cells or have mutations in regulatory or accessory proteins, such as Vpr or Nef, with particular toxicity for renal cells, but few data address this issue.

People of African descent with HIV-1 infection are at a markedly increased risk for focal segmental glomerulosclerosis, with an at least 18-fold increased risk compared with people of European descent (137). Since a similar predilection is seen in the United States, Europe, and South America, cultural factors seem an unlikely explanation. Instead, one or more host genetic loci probably contribute to risk, with particular risk alleles more common in populations of African descent. Theoretically, these alleles might contribute to HIV-1 entry into renal parenchymal cells, potentiate toxicity of viral accessory proteins in renal cells, or heighten a fibrotic response to viral-initiated renal injury.

A genetic mutation that contributes to HIV-associated nephropathy might be unique for this syndrome or extend to idiopathic focal segmental glomerulosclerosis or other forms of glomerular injury. While there is no evidence that the first possibility is correct, the relative rarity of HIV-1 infection (<0.2% of the U.S. population is infected) makes it difficult to estimate the risk for HIV-associated nephropathy among different kindreds. However, probands with HIV infection and renal disease have an increased number of first- and second-degree relatives with renal disease (not limited to focal glomerulosclerosis) compared with ethnically matched patients with HIV-1 infection without kidney disease (62). These data tend to support the second or third possibility outlined. At present, it seems that HIV-associated nephropathy probably has both genetic and environmental components.

We have initiated ongoing studies comparing genetic polymorphisms among African Americans with HIV-associated nephropathy, idiopathic focal segmental glomerulosclerosis, and HIV-1 infection for at least 8 years but without renal disease (a hypernormal control group, in that these individuals have been challenged with a virus known to induce focal glomerulosclerosis but have not developed this syndrome), African-American blood donors, and European-American patients with idiopathic focal segmental glomerulosclerosis and blood donors. We have performed genotyping in these individuals for polymorphisms in various candidate genes, including those for chemokine receptors, chemokines, and members of the renin–angiotensin-transforming growth factor-β system. To date, preliminary studies demonstrate that the only gene that differs between African-American patients with HIV-associated nephropathy and African-American controls is the gene encoding ACE (138). Patients homozygous for an Alu insertion in intron 16 of ACE are at an increased risk for focal segmental glomerulosclerosis; this is true for both African Americans with HIV-associated focal segmental glomerulosclerosis and those with idiopathic focal segmental glomerulosclerosis. In European Americans, the ACE polymorphism was not significantly associated with focal segmental glomerulosclerosis.

Angiotensin-converting enzyme polymorphisms have been associated with the incidence or rate of progression of various glomerular diseases, including diabetes (139), IgA nephropathy (140), and idiopathic focal segmental glomerulosclerosis (141142) in Asian patients, but all these studies suggest that patients homozygous for the intron 16 deletion allele are more susceptible. Of interest, these studies have included few African Americans. Unlike other populations, in African Americans, there is no correlation between intron 16 polymorphism and serum ACE level (143). We interpret these data to suggest that, in African Americans, the intron 16 polymorphism is in linkage disequilibrium with one or more mutations that contribute to focal segmental glomerulosclerosis risk.

Much has been learned about the pathogenesis and treatment of HIV-associated renal diseases because of the development of animal models and the molecular evaluation of clinical samples. Although the pathogenesis of HIV-associated nephropathy is clearly linked to the viral illness, over the next decade we must determine how infection results in the development of disease. HIV peptides rather than infection may be more important in nephropathogenesis. We must determine why some patients are susceptible to disease development and others are not. Genetic factors, the host response, and effects of HIV peptides on podocytes, on renal cellular apoptosis, and on the ability to present antigen may be critical to pathogenesis. Although highly active antiretroviral therapy will play an important role in preventing and treating HIV-associated nephropathy, well-designed and -controlled clinical trials are necessary to determine the roles of therapy with glucocorticoids and ACE inhibitors. Knowledge about the treatment of HIV-infected patients with renal transplantation and proper treatment of other HIV-associated renal diseases is rudimentary.

Rao TK, Filippone EJ, Nicastri AD, Landesman SH, Frank E, Chen CK, et al..  Associated focal and segmental glomerulosclerosis in the acquired immunodeficiency syndrome. N Engl J Med. 1984; 310:669-73.
PubMed
 
Pardo V, Aldana M, Colton RM, Fischl MA, Jaffe D, Moskowitz L, et al..  Glomerular lesions in the acquired immunodeficiency syndrome. Ann Intern Med. 1984; 101:429-34.
PubMed
 
Gardenswartz MH, Lerner CW, Seligson GR, Zabetakis PM, Rotterdam H, Tapper ML, et al..  Renal disease in patients with AIDS: a clinicopathologic study. Clin Nephrol. 1984; 21:197-204.
PubMed
 
Kimmel PL.  The nephropathies of HIV infection: pathogenesis and treatment. Curr Opin Nephrol Hypertens. 2000; 9:117-22.
PubMed
 
Rao TK, Friedman EA, Nicastri AD.  The types of renal disease in the acquired immunodeficiency syndrome. N Engl J Med. 1987; 316:1062-8.
PubMed
 
Rao TK.  Acute renal failure syndromes in human immunodeficiency virus infection. Semin Nephrol. 1998; 18:378-95.
PubMed
 
Peraldi MN, Maslo C, Akposso K, Mougenot B, Rondeau E, Sraer JD.  Acute renal failure in the course of HIV infection: a single-institution retrospective study of ninety-two patients anad sixty renal biopsies. Nephrol Dial Transplant. 1999; 14:1578-85.
PubMed
 
Perazella MA.  Acute renal failure in HIV-infected patients: a brief review of common causes. Am J Med Sci. 2000; 319:385-91.
PubMed
 
Joshi MK, Liu HH.  Acute rhabdomyolysis and renal failure in HIV-infected patients: risk factors, presentation, and pathophysiology. AIDS Patient Care STDS. 2000; 14:541-8.
PubMed
 
Kopp JB.  Renal dysfunction in HIV-1-infected patients. Curr Infect Dis Rep. 2002; 4:449-460.
PubMed
 
Hare CB, Vu MP, Grunfeld C, Lampiris HW.  Simvastatin-nelfinavir interaction implicated in rhabdomyolysis and death. Clin Infect Dis. 2002; 35:e111-2.
PubMed
 
Cheng CH, Miller C, Lowe C, Pearson VE.  Rhabdomyolysis due to probable interaction between simvastatin and ritonavir. Am J Health Syst Pharm. 2002; 59:728-30.
PubMed
 
Castro JG, Gutierrez L.  Rhabdomyolysis with acute renal failure probably related to the interaction of atorvastatin and delavirdine [Letter]. Am J Med. 2002; 112:505.
PubMed
 
Mastroianni CM, d'Ettorre G, Forcina G, Lichtner M, Corpolongo A, Coletta S, et al..  Rhabdomyolysis after cerivastatin-gemfibrozil therapy in an HIV-infected patient with protease inhibitor-related hyperlipidemia [Letter]. AIDS. 2001; 15:820-1.
PubMed
 
Alpers CE.  Light at the end of the TUNEL: HIV-associated thrombotic microangiopathy. Kidney Int. 2003; 63:385-96.
PubMed
 
Olyaei AJ, deMattos AM, Bennett WM.  Renal toxicity of protease inhibitors. Curr Opin Nephrol Hypertens. 2000; 9:473-6.
PubMed
 
Krishnan M, Nair R, Haas M, Atta MG.  Acute renal failure in an HIV-positive 50-year-old man. Am J Kidney Dis. 2000; 36:1075-8.
PubMed
 
Coca S, Perazella MA.  Rapid communication: acute renal failure associated with tenofovir: evidence of drug-induced nephrotoxicity. Am J Med Sci. 2002; 324:342-4.
PubMed
 
Verhelst D, Monge M, Meynard JL, Fouqueray B, Mougenot B, Girard PM, et al..  Fanconi syndrome and renal failure induced by tenofovir: a first case report. Am J Kidney Dis. 2002; 40:1331-3.
PubMed
 
Perazella MA.  Crystal-induced acute renal failure. Am J Med. 1999; 106:459-65.
PubMed
 
Kopp JB, Miller KD, Mican JA, Feuerstein IM, Vaughan E, Baker C, et al..  Crystalluria and urinary tract abnormalities associated with indinavir. Ann Intern Med. 1997; 127:119-25.
PubMed
 
Reilly RF, Tray K, Perazella MA.  Indinavir nephropathy revisited: a pattern of insidious renal failure with identifiable risk factors. Am J Kidney Dis. 2001; 38:E23.
PubMed
 
Engeler DS, John H, Rentsch KM, Ruef C, Oertle D, Suter S.  Nelfinavir urinary stones. J Urol. 2002; 167:1384-5.
PubMed
 
Dieleman JP, van Rossum AM, Stricker BC, Sturkenboom MC, de Groot R, Telgt D, et al..  Persistent leukocyturia and loss of renal function in a prospectively monitored cohort of HIV-infected patients treated with indinavir. J Acquir Immune Defic Syndr. 2003; 32:135-42.
PubMed
 
Tokars JI, Frank M, Alter MJ, Arduino MJ.  National surveillance of dialysis-associated diseases in the United States, 2000. Semin Dial. 2002; 15:162-71.
PubMed
 
Eggers PW, Kimmel PL.  Is there an epidemic of HIV nephropathy in the U.S. ESRD program? [Abstract] J Am Soc Nephrol. 2002; 12:38A.
 
Weiner NJ, Goodman JW, Kimmel PL.  The HIV-associated renal diseases: Current insight into pathogenesis and treatment. Kidney Int. 2003; 63:1618-31.
PubMed
 
Winston JA, Klotman PE.  Are we missing an epidemic of HIV-associated nephropathy? [Editorial]. J Am Soc Nephrol. 1996; 7:1-7.
PubMed
 
Szczech LA.  Renal diseases associated with human immunodeficiency virus infection: epidemiology, clinical course, and management. Clin Infect Dis. 2001; 33:115-9.
PubMed
 
Kimmel PL, Umana WO, Bosch JP.  Abnormal urinary protein excretion in HIV-infected patients. Clin Nephrol. 1993; 39:17-21.
PubMed
 
Hailemariam S, Walder M, Burger HR, Cathomas G, Mihatsch M, Binswanger U, et al..  Renal pathology and premortem clinical presentation of Caucasian patients with AIDS: an autopsy study from the era prior to antiretroviral therapy. Swiss Med Wkly. 2001; 131:412-7.
PubMed
 
Szczech LA, Gange SJ, van der Horst C, Bartlett JA, Young M, Cohen MH, et al..  Predictors of proteinuria and renal failure among women with HIV infection. Kidney Int. 2002; 61:195-202.
PubMed
 
Gardner LI, Holmberg SD, Williamson JM, Szczech LA, Carpenter CC, Rompalo AM, et al..  Development of proteinuria or elevated serum creatinine and mortality in HIV-infected women. J Acquir Immune Defic Syndr. 2003; 32:203-9.
PubMed
 
Mitra D, Kim J, MacLow C, Karsan A, Laurence J.  Role of caspases 1 and 3 and Bcl-2-related molecules in endothelial cell apoptosis associated with thrombotic microangiopathies. Am J Hematol. 1998; 59:279-87.
PubMed
 
Eitner F, Cui Y, Hudkins KL, Schmidt A, Birkebak T, Agy MB, et al..  Thrombotic microangiopathy in the HIV-2-infected macaque. Am J Pathol. 1999; 155:649-61.
PubMed
 
Hymes KB, Karpatkin S.  Human immunodeficiency virus infection and thrombotic microangiopathy. Semin Hematol. 1997; 34:117-25.
PubMed
 
Park IW, Ullrich CK, Schoenberger E, Ganju RK, Groopman JE.  HIV-1 Tat induces microvascular endothelial apoptosis through caspase activation. J Immunol. 2001; 167:2766-71.
PubMed
 
Sahud MA, Claster S, Liu L, Ero M, Harris K, Furlan M.  von Willebrand factor-cleaving protease inhibitor in a patient with human immunodeficiency syndrome-associated thrombotic thrombocytopenic purpura. Br J Haematol. 2002; 116:909-11.
PubMed
 
Bottieau E, Colebunders R, Bosmans JL.  Favourable outcome of haemolytic uraemic syndrome in an HIV-infected patient treated only with prednisone [Letter]. J Infect. 2000; 41:108-9.
PubMed
 
Sacristán Lista F, Saavedra Alonso AJ, Oliver Morales J, Vázquez Martul E.  Nephrotic syndrome due to thrombotic microangiopathy (TMA) as the first manifestation of human immunodeficiency virus infection: recovery before antiretroviral therapy without specific treatment against TMA. Clin Nephrol. 2001; 55:404-7.
PubMed
 
Briggs WA, Tanawattanacharoen S, Choi MJ, Scheel PJ Jr, Nadasdy T, Racusen L.  Clinicopathologic correlates of prednisone treatment of human immunodeficiency virus-associated nephropathy. Am J Kidney Dis. 1996; 28:618-21.
PubMed
 
Monga G, Mazzucco G, Boldorini R, Cristina S, Giacalone A, Fortunato M, et al..  Renal changes in patients with acquired immunodeficiency syndrome: a post-mortem study on an unselected population in northwestern Italy. Mod Pathol. 1997; 10:159-67.
PubMed
 
Nochy D, Glotz D, Dosquet P, Pruna A, Guettier C, Weiss L, et al..  Renal disease associated with HIV infection: a multicentric study of 60 patients from Paris hospitals. Nephrol Dial Transplant. 1993; 8:11-9.
PubMed
 
Kimmel PL, Ferreira-Centeno A, Farkas-Szallasi T, Abraham AA, Garrett CT.  Viral DNA in microdissected renal biopsy tissue from HIV infected patients with nephrotic syndrome. Kidney Int. 1993; 43:1347-52.
PubMed
 
Casanova S, Mazzucco G, Barbiano di Belgiojoso G, Motta M, Boldorini R, Genderini A, et al..  Pattern of glomerular involvement in human immunodeficiency virus-infected patients: an Italian study. Am J Kidney Dis. 1995; 26:446-53.
PubMed
 
Connolly JO, Weston CE, Hendry BM.  HIV-associated renal disease in London hospitals. QJM. 1995; 88:627-34.
PubMed
 
Praditpornsilpa K, Napathorn S, Yenrudi S, Wankrairot P, Tungsaga K, Sitprija V.  Renal pathology and HIV infection in Thailand. Am J Kidney Dis. 1999; 33:282-6.
PubMed
 
Williams DI, Williams DJ, Williams IG, Unwin RJ, Griffiths MH, Miller RF.  Presentation, pathology, and outcome of HIV associated renal disease in a specialist centre for HIV/AIDS. Sex Transm Infect. 1998; 74:179-84.
PubMed
 
Kimmel PL, Phillips TM.  Immune complex glomerulonephritis associated with HIV infection. Kimmel PL, Berns JS, Stein JH Renal and Urologic Aspects of HIV Infection. New York: Churchill Livingstone; 1995; 77-110.
 
Chidambaram M, Stigant CE, Sugar LM, Ramesh Prasad GV.  Type I membranoproliferative glomerulonephritis in an HIV-infected individual without hepatitis C co-infection. Clin Nephrol. 2002; 57:154-7.
PubMed
 
Alarcón-Zurita A, Salas A, Antón E, Morey A, Munar MA, Losada P, et al..  Membranous glomerulonephritis with nephrotic syndrome in a HIV positive patient—remarkable remission with triple therapy [Letter]. Nephrol Dial Transplant. 2000; 15:1097-8.
PubMed
 
Haas M, Rajaraman S, Ahuja T, Kittaka M, Cavallo T.  Fibrillary/immunotactoid glomerulonephritis in HIV-positive patients: a report of three cases. Nephrol Dial Transplant. 2000; 15:1679-83.
PubMed
 
Cheng JT, Anderson HL Jr, Markowitz GS, Appel GB, Pogue VA, D'Agati VD.  Hepatitis C virus-associated glomerular disease in patients with human immunodeficiency virus coinfection. J Am Soc Nephrol. 1999; 10:1566-74.
PubMed
 
Stokes MB, Chawla H, Brody RI, Kumar A, Gertner R, Goldfarb DS, et al..  Immune complex glomerulonephritis in patients coinfected with human immunodeficiency virus and hepatitis C virus. Am J Kidney Dis. 1997; 29:514-25.
PubMed
 
Guerra IL, Abraham AA, Kimmel PL, Sabnis SG, Antonovych TT.  Nephrotic syndrome associated with chronic persistent hepatitis B in an HIV antibody positive patient. Am J Kidney Dis. 1987; 10:385-8.
PubMed
 
Korbet SM, Schwartz MM.  Human immunodeficiency virus infection and nephrotic syndrome. Am J Kidney Dis. 1992; 20:97-103.
PubMed
 
Kimmel PL, Phillips TM, Ferreira-Centeno A, Farkas-Szallasi T, Abraham AA, Garrett CT.  HIV-associated immune-mediated renal disease. Kidney Int. 1993; 44:1327-40.
PubMed
 
Katz A, Bargman JM, Miller DC, Guo JW, Ghali VS, Schoeneman MJ.  IgA nephritis in HIV-positive patients: a new HIV-associated nephropathy? Clin Nephrol. 1992; 38:61-8.
PubMed
 
Kimmel PL, Phillips TM, Ferreira-Centeno A, Farkas-Szallasi T, Abraham AA, Garrett CT.  Brief report: idiotypic IgA nephropathy in patients with human immunodeficiency virus infection. N Engl J Med. 1992; 327:702-6.
PubMed
 
Beaufils H, Jouanneau C, Katlama C, Sazdovitch V, Hauw JJ.  HIV-associated IgA nephropathy—a post-mortem study. Nephrol Dial Transplant. 1995; 10:35-8.
PubMed
 
Donadio JV, Grande JP.  IgA nephropathy. N Engl J Med. 2002; 347:738-48.
PubMed
 
Freedman BI, Soucie JM, Stone SM, Pegram S.  Familial clustering of end-stage renal disease in blacks with HIV-associated nephropathy. Am J Kidney Dis. 1999; 34:254-8.
PubMed
 
Górriz JL, Rovira E, Sancho A, Ferrer R, Paricio A, Pallardó LM.  IgA nephropathy associated with human immuno deficiency virus infection: antiproteinuric effect of captopril [Letter]. Nephrol Dial Transplant. 1997; 12:2796-7.
PubMed
 
Boix E, Rivera F, Gil CM, Pérez-Contreras J, Olivares J.  Steroid-responsive nephrotic syndrome with minimal-change disease and IgA deposits in a HIV-infected patient. Nephrol Dial Transplant. 2000; 15:412-4.
PubMed
 
Mattana J, Siegal FP, Schwarzwald E, Molho L, Sankaran RT, Gooneratne R, et al..  AIDS-associated membranous nephropathy with advanced renal failure: response to prednisone. Am J Kidney Dis. 1997; 30:116-9.
PubMed
 
Bourgoignie JJ.  Renal complications of human immunodeficiency virus type 1. Kidney Int. 1990; 37:1571-84.
PubMed
 
Klotman PE.  HIV-associated nephropathy. Kidney Int. 1999; 56:1161-76.
PubMed
 
D'Agati V, Appel GB.  HIV infection and the kidney. J Am Soc Nephrol. 1997; 8:138-52.
PubMed
 
Winston JA, Klotman ME, Klotman PE.  HIV-associated nephropathy is a late, not early, manifestation of HIV-1 infection. Kidney Int. 1999; 55:1036-40.
PubMed
 
Wali RK, Drachenberg CI, Papadimitriou JC, Keay S, Ramos E.  HIV-1-associated nephropathy and response to highly-active antiretroviral therapy [Letter]. Lancet. 1998; 352:783-4.
PubMed
 
Levin ML, Palella F, Shah S, Lerma E, Butter J, Kanwar YS.  Hiv-associated nephropathy occurring before HIV antibody seroconversion. Am J Kidney Dis. 2001; 37:E39.
PubMed
 
Winston JA, Bruggeman LA, Ross MD, Jacobson J, Ross L, D'Agati VD, et al..  Nephropathy and establishment of a renal reservoir of HIV type 1 during primary infection. N Engl J Med. 2001; 344:1979-84.
PubMed
 
Cohen AH, Nast CC.  HIV-associated nephropathy. A unique combined glomerular, tubular, and interstitial lesion. Mod Pathol. 1988; 1:87-97.
PubMed
 
D'Agati V, Appel GB.  Renal pathology of human immunodeficiency virus infection. Semin Nephrol. 1998; 18:406-21.
PubMed
 
Strauss J, Abitbol C, Zilleruelo G, Scott G, Paredes A, Malaga S, et al..  Renal disease in children with the acquired immunodeficiency syndrome. N Engl J Med. 1989; 321:625-30.
PubMed
 
Kopp JB, Klotman ME, Adler SH, Bruggeman LA, Dickie P, Marinos NJ, et al..  Progressive glomerulosclerosis and enhanced renal accumulation of basement membrane components in mice transgenic for human immunodeficiency virus type 1 genes. Proc Natl Acad Sci U S A. 1992; 89:1577-81.
PubMed
 
Reid W, Sadowska M, Denaro F, Rao S, Foulke J Jr, Hayes N, et al..  An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc Natl Acad Sci U S A. 2001; 98:9271-6.
PubMed
 
Alpers CE, Tsai CC, Hudkins KL, Cui Y, Kuller L, Benveniste RE, et al..  Focal segmental glomerulosclerosis in primates infected with a simian immunodeficiency virus. AIDS Res Hum Retroviruses. 1997; 13:413-24.
PubMed
 
Stephens EB, Tian C, Dalton SB, Gattone VH 2nd.  Simian-human immunodeficiency virus-associated nephropathy in macaques. AIDS Res Hum Retroviruses. 2000; 16:1295-306.
PubMed
 
Marras D, Bruggeman LA, Gao F, Tanji N, Mansukhani MM, Cara A, et al..  Replication and compartmentalization of HIV-1 in kidney epithelium of patients with HIV-associated nephropathy. Nat Med. 2002; 8:522-6.
PubMed
 
Bruggeman LA, Ross MD, Tanji N, Cara A, Dikman S, Gordon RE, et al..  Renal epithelium is a previously unrecognized site of HIV-1 infection. J Am Soc Nephrol. 2000; 11:2079-87.
PubMed
 
Ross MJ, Klotman PE.  Recent progress in HIV-associated nephropathy. J Am Soc Nephrol. 2002; 13:2997-3004.
PubMed
 
Bodi I, Abraham AA, Kimmel PL.  Macrophages in HIV nephropathy. Am J Kidney Dis. 1994; 24:762-767.
 
Segerer S, Nelson PJ, Schlöndorff D.  Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies. J Am Soc Nephrol. 2000; 11:152-76.
PubMed
 
Kinter A, Arthos J, Cicala C, Fauci AS.  Chemokines, cytokines and HIV: a complex network of interactions that influence HIV pathogenesis. Immunol Rev. 2000; 177:88-98.
PubMed
 
Carrington M, Dean M, Martin MP, O'Brien SJ.  Genetics of HIV-1 infection: chemokine receptor CCR5 polymorphism and its consequences. Hum Mol Genet. 1999; 8:1939-45.
PubMed
 
Conaldi PG, Biancone L, Bottelli A, Wade-Evans A, Racusen LC, Boccellino M, et al..  HIV-1 kills renal tubular epithelial cells in vitro by triggering an apoptotic pathway involving caspase activation and Fas upregulation. J Clin Invest. 1998; 102:2041-9.
PubMed
 
Huber TB, Reinhardt HC, Exner M, Burger JA, Kerjaschki D, Saleem MA, et al..  Expression of functional CCR and CXCR chemokine receptors in podocytes. J Immunol. 2002; 168:6244-52.
PubMed
 
Eitner F, Cui Y, Hudkins KL, Stokes MB, Segerer S, Mack M, et al..  Chemokine receptor CCR5 and CXCR4 expression in HIV-associated kidney disease. J Am Soc Nephrol. 2000; 11:856-67.
PubMed
 
Bódi I, Kimmel PL, Abraham AA, Svetkey LP, Klotman PE, Kopp JB.  Renal TGF-β in HIV-associated kidney diseases. Kidney Int. 1997; 51:1568-77.
PubMed
 
Kimmel PL, Cohen DJ, Abraham AA, Bodi I, Schwartz AM, Phillips TM.  Upregulation of MHC class II, interferon-α and interferon-γ receptor protein expression in HIV-associated nephropathy. Nephrol Dial Transplant. 2003; 18:285-92.
PubMed
 
Bódi I, Abraham AA, Kimmel PL.  Apoptosis in human immunodeficiency virus-associated nephropathy. Am J Kidney Dis. 1995; 26:286-91.
PubMed
 
Bruggeman LA, Dikman S, Meng C, Quaggin SE, Coffman TM, Klotman PE.  Nephropathy in human immunodeficiency virus-1 transgenic mice is due to renal transgene expression. J Clin Invest. 1997; 100:84-92.
PubMed
 
Kimmel PL, Bosch JP, Vassalotti JA.  Treatment of human immunodeficiency virus (HIV)-associated nephropathy. Semin Nephrol. 1998; 18:446-58.
PubMed
 
Smith MC, Austen JL, Carey JT, Emancipator SN, Herbener T, Gripshover B, et al..  Prednisone improves renal function and proteinuria in human immunodeficiency virus-associated nephropathy. Am J Med. 1996; 101:41-8.
PubMed
 
Sothinathan R, Briggs WA, Eustace JA.  Treatment of HIV-associated nephropathy. AIDS Patient Care STDS. 2001; 15:363-71.
PubMed
 
Winston JA, Burns GC, Klotman PE.  Treatment of HIV-associated nephropathy. Semin Nephrol. 2000; 20:293-8.
PubMed
 
Eustace JA, Nuermberger E, Choi M, Scheel PJ Jr, Moore R, Briggs WA.  Cohort study of the treatment of severe HIV-associated nephropathy with corticosteroids. Kidney Int. 2000; 58:1253-60.
PubMed
 
Kimmel PL, Mishkin GJ, Umana WO.  Captopril and renal survival in patients with human immunodeficiency virus nephropathy. Am J Kidney Dis. 1996; 28:202-8.
PubMed
 
Burns GC, Paul SK, Toth IR, Sivak SL.  Effect of angiotensin-converting enzyme inhibition in HIV-associated nephropathy. J Am Soc Nephrol. 1997; 8:1140-6.
PubMed
 
Bird JE, Durham SK, Giancarli MR, Gitlitz PH, Pandya DG, Dambach DM, et al..  Captopril prevents nephropathy in HIV-transgenic mice. J Am Soc Nephrol. 1998; 9:1441-7.
PubMed
 
Cosgrove CJ, Abu-Alfa AK, Perazella MA.  Observations on HIV-associated renal disease in the era of highly active antiretroviral therapy. Am J Med Sci. 2002; 323:102-6.
PubMed
 
Kirchner JT.  Resolution of renal failure after initiation of HAART: 3 cases and a discussion of the literature. AIDS Read. 2002; 12:103-5, 110-2.
PubMed
 
Szczech LA, Edwards LJ, Sanders LL, van der Horst C, Bartlett JA, Heald AE, et al..  Protease inhibitors are associated with a slowed progression of HIV-related renal diseases. Clin Nephrol. 2002; 57:336-41.
PubMed
 
Ahuja TS, Borucki M, Grady J.  Highly active antiretroviral therapy improves survival of HIV-infected hemodialysis patients. Am J Kidney Dis. 2000; 36:574-80.
PubMed
 
Ahuja TS, Grady J, Khan S.  Changing trends in the survival of dialysis patients with human immunodeficiency virus in the United States. J Am Soc Nephrol. 2002; 13:1889-93.
PubMed
 
Gow PJ, Pillay D, Mutimer D.  Solid organ transplantation in patients with HIV infection. Transplantation. 2001; 72:177-81.
PubMed
 
Murphy B, Carlson L, Rohal S, Keller M, Lu A, Kumar MSA, et al..  Renal transplantation in HIV-infected recipients: twenty-three cases in the HAART era [Abstract]. J Am Soc Nephrol. 2002; 13:11A.
 
Halpern SD, Ubel PA, Caplan AL.  Solid-organ transplantation in HIV-infected patients. N Engl J Med. 2002; 347:284-7.
PubMed
 
Kuo PC, Stock PG.  Transplantation in the HIV+ patient. Am J Transplant. 2001; 1:13-7.
PubMed
 
Roland ME, Stock PG.  Review of solid-organ transplantation in HIV-infected patients. Transplantation. 2003; 75:425-9.
PubMed
 
Dybul M, Fauci AS, Bartlett JG, Kaplan JE, Pau AK.  Guidelines for using antiretroviral agents among HIV-infected adults and adolescents. Ann Intern Med. 2002; 137:381-433.
PubMed
 
Klotman P, Klotman M.  Editorial comment: renal insufficiency in HIV-infected patients may not always be HIVAN. AIDS Read. 2002; 12:273.
PubMed
 
Valeri A, Barisoni L, Appel GB, Seigle R, D'Agati V.  Idiopathic collapsing focal segmental glomerulosclerosis: a clinicopathologic study. Kidney Int. 1996; 50:1734-46.
PubMed
 
D'Agati V.  The many masks of focal segmental glomerulosclerosis. Kidney Int. 1994; 46:1223-41.
PubMed
 
Schwartz MM, Korbet SM, Rydell J, Borok R, Genchi R.  Primary focal segmental glomerular sclerosis in adults: prognostic value of histologic variants. Am J Kidney Dis. 1995; 25:845-52.
PubMed
 
Schwimmer JA, Markowitz GS, Valeri A, Appel GB.  Collapsing glomerulopathy. Semin Nephrol. 2003; 23:209-18.
PubMed
 
Barisoni L, Kriz W, Mundel P, D'Agati V.  The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol. 1999; 10:51-61.
PubMed
 
Barisoni L, Bruggeman LA, Mundel P, D'Agati VD, Klotman PE.  HIV-1 induces renal epithelial dedifferentiation in a transgenic model of HIV-associated nephropathy. Kidney Int. 2000; 58:173-81.
PubMed
 
Bariéty J, Nochy D, Mandet C, Jacquot C, Glotz D, Meyrier A.  Podocytes undergo phenotypic changes and express macrophagic-associated markers in idiopathic collapsing glomerulopathy. Kidney Int. 1998; 53:918-25.
PubMed
 
Barisoni L, Mokrzycki M, Sablay L, Nagata M, Yamase H, Mundel P.  Podocyte cell cycle regulation and proliferation in collapsing glomerulopathies. Kidney Int. 2000; 58:137-43.
PubMed
 
Shankland SJ, Eitner F, Hudkins KL, Goodpaster T, D'Agati V, Alpers CE.  Differential expression of cyclin-dependent kinase inhibitors in human glomerular disease: role in podocyte proliferation and maturation. Kidney Int. 2000; 58:674-83.
PubMed
 
Barisoni L, Kopp JB.  Modulation of podocyte phenotype in collapsing glomerulopathies. Microsc Res Tech. 2002; 57:254-62.
PubMed
 
Dickie P, Felser J, Eckhaus M, Bryant J, Silver J, Marinos N, et al..  HIV-associated nephropathy in transgenic mice expressing HIV-1 genes. Virology. 1991; 185:109-19.
PubMed
 
Ross MJ, Bruggeman LA, Wilson PD, Klotman PE.  Microcyst formation and HIV-1 gene expression occur in multiple nephron segments in HIV-associated nephropathy. J Am Soc Nephrol. 2001; 12:2645-51.
PubMed
 
Bauer FA, Wear DJ, Angritt P, Lo SC.  Mycoplasma fermentans (incognitus strain) infection in the kidneys of patients with acquired immunodeficiency syndrome and associated nephropathy: a light microscopic, immunohistochemical, and ultrastructural study. Hum Pathol. 1991; 22:63-9.
PubMed
 
Li RM, Branton MH, Tanawattanacharoen S, Falk RA, Jennette JC, Kopp JB.  Molecular identification of SV40 infection in human subjects and possible association with kidney disease. J Am Soc Nephrol. 2002; 13:2320-30.
PubMed
 
Yamamoto T, Noble NA, Cohen AH, Nast CC, Hishida A, Gold LI, et al..  Expression of transforming growth factor-β isoforms in human glomerular diseases. Kidney Int. 1996; 49:461-9.
PubMed
 
Ray PE, Liu XH, Henry D, Dye L 3rd, Xu L, Orenstein JM, et al..  Infection of human primary renal epithelial cells with HIV-1 from children with HIV-associated nephropathy. Kidney Int. 1998; 53:1217-29.
PubMed
 
Green DF, Resnick L, Bourgoignie JJ.  HIV infects glomerular endothelial and mesangial but not epithelial cells in vitro. Kidney Int. 1992; 41:956-60.
PubMed
 
Alpers CE, McClure J, Bursten SL.  Human mesangial cells are resistant to productive infection by multiple strains of human immunodeficiency virus types 1 and 2. Am J Kidney Dis. 1992; 19:126-30.
PubMed
 
Tokizawa S, Shimizu N, Hui-Yu L, Deyu F, Haraguchi Y, Oite T, et al..  Infection of mesangial cells with HIV and SIV: identification of GPR1 as a coreceptor. Kidney Int. 2000; 58:607-17.
PubMed
 
Cohen AH, Sun NC, Shapshak P, Imagawa DT.  Demonstration of human immunodeficiency virus in renal epithelium in HIV-associated nephropathy. Mod Pathol. 1989; 2:125-8.
PubMed
 
Kimmel PL, Phillips TM, Tinkle BT, Jay G.  HIV accessory proteins and transforming growth factor-β1 are associated with nephropathy in a transgenic mouse model [Abstract]. J Invest Med. 1996; 44:321A.
 
Kajiyama W, Klotman PE, Dickie P, Kopp JB.  HIV-1 genes are expressed in glomerular and tubular epithelial cells in HIV-transgenic mouse kidney. AIDS Res Hum Retroviruses. 1995; 11:supplS153.
 
Hanna Z, Kay DG, Rebai N, Guimond A, Jothy S, Jolicoeur P.  Nef harbors a major determinant of pathogenicity for an AIDS-like disease induced by HIV-1 in transgenic mice. Cell. 1998; 95:163-75.
PubMed
 
Kopp JB, Winkler CA.  HIV-associated nephropathy in African Americans. Kidney Int. 2003; 63:S43-9.
 
Kopp JB, Vlahov D, Macalino G, et al..  Candidate gene analysis in focal segmental glomerulosclerosis among African-Americans [Abstract]. J Am Soc Nephrol. 1998; 9:A1997.
 
Marre M, Jeunemaitre X, Gallois Y, Rodier M, Chatellier G, Sert C, et al..  Contribution of genetic polymorphism in the renin-angiotensin system to the development of renal complications in insulin-dependent diabetes: Genetique de la Nephropathie Diabetique (GENEDIAB) study group. J Clin Invest. 1997; 99:1585-95.
PubMed
 
Yoshida H, Mitarai T, Kawamura T, Kitajima T, Miyazaki Y, Nagasawa R, et al..  Role of the deletion of polymorphism of the angiotensin converting enzyme gene in the progression and therapeutic responsiveness of IgA nephropathy. J Clin Invest. 1995; 96:2162-9.
PubMed
 
Lee DY, Kim W, Kang SK, Koh GY, Park SK.  Angiotensin-converting enzyme gene polymorphism in patients with minimal-change nephrotic syndrome and focal segmental glomerulosclerosis. Nephron. 1997; 77:471-3.
PubMed
 
Hori C, Hiraoka M, Yoshikawa N, Tsuzuki K, Yoshida Y, Yoshioka K, et al..  Significance of ACE genotypes and medical treatments in childhood focal glomerulosclerosis. Nephron. 2001; 88:313-9.
PubMed
 
Bloem LJ, Manatunga AK, Pratt JH.  Racial difference in the relationship of an angiotensin I-converting enzyme gene polymorphism to serum angiotensin I-converting enzyme activity. Hypertension. 1996; 27:62-6.
PubMed
 

Figures

Grahic Jump Location
Figure 1.
Percentage of HIV-infected patients receiving hemodialysis in the U.S. hemodialysis program

. Data obtained from the Centers for Disease Control and Prevention. Reproduced with permission from reference 27, Kidney Int. 2003; 63:1618-31.

Grahic Jump Location
Grahic Jump Location
Figure 2.
Interferon-α protein expression in renal tissue compartmentsPP

. Interferon-α protein was assessed in microdissected renal glomerular and interstitial tissue from 6 patients with HIV-associated nephropathy, 4 patients with HIV-associated immune-mediated glomerulonephritis, 3 HIV-infected patients who died without autopsy evidence of renal disease, 9 patients with idiopathic focal segmental glomerulosclerosis in the absence of HIV infection, and renal tissue of uninfected patients without clinical or pathologic evidence of renal disease by high-performance immunoaffinity chromatography and chemiluminescent enzyme-linked immunosorbent assay. Renal interstitial and glomerular interferon-α protein levels were significantly higher in renal tissue from patients with HIV-associated nephropathy than in tissue from all other groups ( = 0.002; analysis of variance). A similar pattern was noted for nonpolymorphic major histocompatibility II locus and interferon-γ receptor protein levels. Error bars indicate SEs. * = 0.002.

Grahic Jump Location
Grahic Jump Location
Figure 3.
Histopathologic characteristics of HIV-associated nephropathy in humans and transgenic mice.A.B.C.PasterisksD and E.DEDEF and G.F++Gbrown

Human HIV-associated nephropathy: A glomerulus shows global collapse of capillary lumina. The glomerular basement membranes are wrinkled and folded, and the urinary space is occupied by proliferating podocytes forming pseudocrescents. Numerous protein reabsorption droplets are present in the podocyte cytoplasm, and this cytoplasm is more abundant than normal (silver staining; original magnification, ×60). Tubulointerstitial damage includes interstitial fibrosis with inflammation, tubular atrophy, and microcysts. Eosinophilic casts are present in the dilated tubular lumina (silver staining; original magnification, ×40). Ultrastructural analysis shows a collapsed glomerular capillary. Note the wrinkling of the glomerular basement membrane. Podocytes ( ) have lost foot processes and primary processes, and their cell body sits directly on the glomerular basement membrane. There is focal detachment of podocytes from the underlying glomerular basement membrane and new matrix deposition ( ). (Original magnification, ×8000.) Membrane nephropathy in HIV-1 transgenic mice: Immunostaining for synaptopodin in wild-type ( ) and HIV-1 transgenic mice ( ): All the glomeruli are stained for synaptopodin in kidneys from wild type ( ). No staining is noted in the kidney of the HIV-1 transgenic mice ( ). (Original magnification, ×20.) Immunostaining for adducin ( ) and Na , K –adenosine triphosphatase ( ) in HIV-1 transgenic mice: No basolateral staining is noted in this dilated tubule, whereas the nondilated tubules display a delicate basolateral staining ( ). (Original magnification, ×40.).

Grahic Jump Location
Grahic Jump Location
Figure 4.
Model for glomerular and tubular cell injury induced by HIV-1

.

Grahic Jump Location

Tables

Table Jump PlaceholderTable.  HIV-1 Transgenic Mice with Renal Disease

References

Rao TK, Filippone EJ, Nicastri AD, Landesman SH, Frank E, Chen CK, et al..  Associated focal and segmental glomerulosclerosis in the acquired immunodeficiency syndrome. N Engl J Med. 1984; 310:669-73.
PubMed
 
Pardo V, Aldana M, Colton RM, Fischl MA, Jaffe D, Moskowitz L, et al..  Glomerular lesions in the acquired immunodeficiency syndrome. Ann Intern Med. 1984; 101:429-34.
PubMed
 
Gardenswartz MH, Lerner CW, Seligson GR, Zabetakis PM, Rotterdam H, Tapper ML, et al..  Renal disease in patients with AIDS: a clinicopathologic study. Clin Nephrol. 1984; 21:197-204.
PubMed
 
Kimmel PL.  The nephropathies of HIV infection: pathogenesis and treatment. Curr Opin Nephrol Hypertens. 2000; 9:117-22.
PubMed
 
Rao TK, Friedman EA, Nicastri AD.  The types of renal disease in the acquired immunodeficiency syndrome. N Engl J Med. 1987; 316:1062-8.
PubMed
 
Rao TK.  Acute renal failure syndromes in human immunodeficiency virus infection. Semin Nephrol. 1998; 18:378-95.
PubMed
 
Peraldi MN, Maslo C, Akposso K, Mougenot B, Rondeau E, Sraer JD.  Acute renal failure in the course of HIV infection: a single-institution retrospective study of ninety-two patients anad sixty renal biopsies. Nephrol Dial Transplant. 1999; 14:1578-85.
PubMed
 
Perazella MA.  Acute renal failure in HIV-infected patients: a brief review of common causes. Am J Med Sci. 2000; 319:385-91.
PubMed
 
Joshi MK, Liu HH.  Acute rhabdomyolysis and renal failure in HIV-infected patients: risk factors, presentation, and pathophysiology. AIDS Patient Care STDS. 2000; 14:541-8.
PubMed
 
Kopp JB.  Renal dysfunction in HIV-1-infected patients. Curr Infect Dis Rep. 2002; 4:449-460.
PubMed
 
Hare CB, Vu MP, Grunfeld C, Lampiris HW.  Simvastatin-nelfinavir interaction implicated in rhabdomyolysis and death. Clin Infect Dis. 2002; 35:e111-2.
PubMed
 
Cheng CH, Miller C, Lowe C, Pearson VE.  Rhabdomyolysis due to probable interaction between simvastatin and ritonavir. Am J Health Syst Pharm. 2002; 59:728-30.
PubMed
 
Castro JG, Gutierrez L.  Rhabdomyolysis with acute renal failure probably related to the interaction of atorvastatin and delavirdine [Letter]. Am J Med. 2002; 112:505.
PubMed
 
Mastroianni CM, d'Ettorre G, Forcina G, Lichtner M, Corpolongo A, Coletta S, et al..  Rhabdomyolysis after cerivastatin-gemfibrozil therapy in an HIV-infected patient with protease inhibitor-related hyperlipidemia [Letter]. AIDS. 2001; 15:820-1.
PubMed
 
Alpers CE.  Light at the end of the TUNEL: HIV-associated thrombotic microangiopathy. Kidney Int. 2003; 63:385-96.
PubMed
 
Olyaei AJ, deMattos AM, Bennett WM.  Renal toxicity of protease inhibitors. Curr Opin Nephrol Hypertens. 2000; 9:473-6.
PubMed
 
Krishnan M, Nair R, Haas M, Atta MG.  Acute renal failure in an HIV-positive 50-year-old man. Am J Kidney Dis. 2000; 36:1075-8.
PubMed
 
Coca S, Perazella MA.  Rapid communication: acute renal failure associated with tenofovir: evidence of drug-induced nephrotoxicity. Am J Med Sci. 2002; 324:342-4.
PubMed
 
Verhelst D, Monge M, Meynard JL, Fouqueray B, Mougenot B, Girard PM, et al..  Fanconi syndrome and renal failure induced by tenofovir: a first case report. Am J Kidney Dis. 2002; 40:1331-3.
PubMed
 
Perazella MA.  Crystal-induced acute renal failure. Am J Med. 1999; 106:459-65.
PubMed
 
Kopp JB, Miller KD, Mican JA, Feuerstein IM, Vaughan E, Baker C, et al..  Crystalluria and urinary tract abnormalities associated with indinavir. Ann Intern Med. 1997; 127:119-25.
PubMed
 
Reilly RF, Tray K, Perazella MA.  Indinavir nephropathy revisited: a pattern of insidious renal failure with identifiable risk factors. Am J Kidney Dis. 2001; 38:E23.
PubMed
 
Engeler DS, John H, Rentsch KM, Ruef C, Oertle D, Suter S.  Nelfinavir urinary stones. J Urol. 2002; 167:1384-5.
PubMed
 
Dieleman JP, van Rossum AM, Stricker BC, Sturkenboom MC, de Groot R, Telgt D, et al..  Persistent leukocyturia and loss of renal function in a prospectively monitored cohort of HIV-infected patients treated with indinavir. J Acquir Immune Defic Syndr. 2003; 32:135-42.
PubMed
 
Tokars JI, Frank M, Alter MJ, Arduino MJ.  National surveillance of dialysis-associated diseases in the United States, 2000. Semin Dial. 2002; 15:162-71.
PubMed
 
Eggers PW, Kimmel PL.  Is there an epidemic of HIV nephropathy in the U.S. ESRD program? [Abstract] J Am Soc Nephrol. 2002; 12:38A.
 
Weiner NJ, Goodman JW, Kimmel PL.  The HIV-associated renal diseases: Current insight into pathogenesis and treatment. Kidney Int. 2003; 63:1618-31.
PubMed
 
Winston JA, Klotman PE.  Are we missing an epidemic of HIV-associated nephropathy? [Editorial]. J Am Soc Nephrol. 1996; 7:1-7.
PubMed
 
Szczech LA.  Renal diseases associated with human immunodeficiency virus infection: epidemiology, clinical course, and management. Clin Infect Dis. 2001; 33:115-9.
PubMed
 
Kimmel PL, Umana WO, Bosch JP.  Abnormal urinary protein excretion in HIV-infected patients. Clin Nephrol. 1993; 39:17-21.
PubMed
 
Hailemariam S, Walder M, Burger HR, Cathomas G, Mihatsch M, Binswanger U, et al..  Renal pathology and premortem clinical presentation of Caucasian patients with AIDS: an autopsy study from the era prior to antiretroviral therapy. Swiss Med Wkly. 2001; 131:412-7.
PubMed
 
Szczech LA, Gange SJ, van der Horst C, Bartlett JA, Young M, Cohen MH, et al..  Predictors of proteinuria and renal failure among women with HIV infection. Kidney Int. 2002; 61:195-202.
PubMed
 
Gardner LI, Holmberg SD, Williamson JM, Szczech LA, Carpenter CC, Rompalo AM, et al..  Development of proteinuria or elevated serum creatinine and mortality in HIV-infected women. J Acquir Immune Defic Syndr. 2003; 32:203-9.
PubMed
 
Mitra D, Kim J, MacLow C, Karsan A, Laurence J.  Role of caspases 1 and 3 and Bcl-2-related molecules in endothelial cell apoptosis associated with thrombotic microangiopathies. Am J Hematol. 1998; 59:279-87.
PubMed
 
Eitner F, Cui Y, Hudkins KL, Schmidt A, Birkebak T, Agy MB, et al..  Thrombotic microangiopathy in the HIV-2-infected macaque. Am J Pathol. 1999; 155:649-61.
PubMed
 
Hymes KB, Karpatkin S.  Human immunodeficiency virus infection and thrombotic microangiopathy. Semin Hematol. 1997; 34:117-25.
PubMed
 
Park IW, Ullrich CK, Schoenberger E, Ganju RK, Groopman JE.  HIV-1 Tat induces microvascular endothelial apoptosis through caspase activation. J Immunol. 2001; 167:2766-71.
PubMed
 
Sahud MA, Claster S, Liu L, Ero M, Harris K, Furlan M.  von Willebrand factor-cleaving protease inhibitor in a patient with human immunodeficiency syndrome-associated thrombotic thrombocytopenic purpura. Br J Haematol. 2002; 116:909-11.
PubMed
 
Bottieau E, Colebunders R, Bosmans JL.  Favourable outcome of haemolytic uraemic syndrome in an HIV-infected patient treated only with prednisone [Letter]. J Infect. 2000; 41:108-9.
PubMed
 
Sacristán Lista F, Saavedra Alonso AJ, Oliver Morales J, Vázquez Martul E.  Nephrotic syndrome due to thrombotic microangiopathy (TMA) as the first manifestation of human immunodeficiency virus infection: recovery before antiretroviral therapy without specific treatment against TMA. Clin Nephrol. 2001; 55:404-7.
PubMed
 
Briggs WA, Tanawattanacharoen S, Choi MJ, Scheel PJ Jr, Nadasdy T, Racusen L.  Clinicopathologic correlates of prednisone treatment of human immunodeficiency virus-associated nephropathy. Am J Kidney Dis. 1996; 28:618-21.
PubMed
 
Monga G, Mazzucco G, Boldorini R, Cristina S, Giacalone A, Fortunato M, et al..  Renal changes in patients with acquired immunodeficiency syndrome: a post-mortem study on an unselected population in northwestern Italy. Mod Pathol. 1997; 10:159-67.
PubMed
 
Nochy D, Glotz D, Dosquet P, Pruna A, Guettier C, Weiss L, et al..  Renal disease associated with HIV infection: a multicentric study of 60 patients from Paris hospitals. Nephrol Dial Transplant. 1993; 8:11-9.
PubMed
 
Kimmel PL, Ferreira-Centeno A, Farkas-Szallasi T, Abraham AA, Garrett CT.  Viral DNA in microdissected renal biopsy tissue from HIV infected patients with nephrotic syndrome. Kidney Int. 1993; 43:1347-52.
PubMed
 
Casanova S, Mazzucco G, Barbiano di Belgiojoso G, Motta M, Boldorini R, Genderini A, et al..  Pattern of glomerular involvement in human immunodeficiency virus-infected patients: an Italian study. Am J Kidney Dis. 1995; 26:446-53.
PubMed
 
Connolly JO, Weston CE, Hendry BM.  HIV-associated renal disease in London hospitals. QJM. 1995; 88:627-34.
PubMed
 
Praditpornsilpa K, Napathorn S, Yenrudi S, Wankrairot P, Tungsaga K, Sitprija V.  Renal pathology and HIV infection in Thailand. Am J Kidney Dis. 1999; 33:282-6.
PubMed
 
Williams DI, Williams DJ, Williams IG, Unwin RJ, Griffiths MH, Miller RF.  Presentation, pathology, and outcome of HIV associated renal disease in a specialist centre for HIV/AIDS. Sex Transm Infect. 1998; 74:179-84.
PubMed
 
Kimmel PL, Phillips TM.  Immune complex glomerulonephritis associated with HIV infection. Kimmel PL, Berns JS, Stein JH Renal and Urologic Aspects of HIV Infection. New York: Churchill Livingstone; 1995; 77-110.
 
Chidambaram M, Stigant CE, Sugar LM, Ramesh Prasad GV.  Type I membranoproliferative glomerulonephritis in an HIV-infected individual without hepatitis C co-infection. Clin Nephrol. 2002; 57:154-7.
PubMed
 
Alarcón-Zurita A, Salas A, Antón E, Morey A, Munar MA, Losada P, et al..  Membranous glomerulonephritis with nephrotic syndrome in a HIV positive patient—remarkable remission with triple therapy [Letter]. Nephrol Dial Transplant. 2000; 15:1097-8.
PubMed
 
Haas M, Rajaraman S, Ahuja T, Kittaka M, Cavallo T.  Fibrillary/immunotactoid glomerulonephritis in HIV-positive patients: a report of three cases. Nephrol Dial Transplant. 2000; 15:1679-83.
PubMed
 
Cheng JT, Anderson HL Jr, Markowitz GS, Appel GB, Pogue VA, D'Agati VD.  Hepatitis C virus-associated glomerular disease in patients with human immunodeficiency virus coinfection. J Am Soc Nephrol. 1999; 10:1566-74.
PubMed
 
Stokes MB, Chawla H, Brody RI, Kumar A, Gertner R, Goldfarb DS, et al..  Immune complex glomerulonephritis in patients coinfected with human immunodeficiency virus and hepatitis C virus. Am J Kidney Dis. 1997; 29:514-25.
PubMed
 
Guerra IL, Abraham AA, Kimmel PL, Sabnis SG, Antonovych TT.  Nephrotic syndrome associated with chronic persistent hepatitis B in an HIV antibody positive patient. Am J Kidney Dis. 1987; 10:385-8.
PubMed
 
Korbet SM, Schwartz MM.  Human immunodeficiency virus infection and nephrotic syndrome. Am J Kidney Dis. 1992; 20:97-103.
PubMed
 
Kimmel PL, Phillips TM, Ferreira-Centeno A, Farkas-Szallasi T, Abraham AA, Garrett CT.  HIV-associated immune-mediated renal disease. Kidney Int. 1993; 44:1327-40.
PubMed
 
Katz A, Bargman JM, Miller DC, Guo JW, Ghali VS, Schoeneman MJ.  IgA nephritis in HIV-positive patients: a new HIV-associated nephropathy? Clin Nephrol. 1992; 38:61-8.
PubMed
 
Kimmel PL, Phillips TM, Ferreira-Centeno A, Farkas-Szallasi T, Abraham AA, Garrett CT.  Brief report: idiotypic IgA nephropathy in patients with human immunodeficiency virus infection. N Engl J Med. 1992; 327:702-6.
PubMed
 
Beaufils H, Jouanneau C, Katlama C, Sazdovitch V, Hauw JJ.  HIV-associated IgA nephropathy—a post-mortem study. Nephrol Dial Transplant. 1995; 10:35-8.
PubMed
 
Donadio JV, Grande JP.  IgA nephropathy. N Engl J Med. 2002; 347:738-48.
PubMed
 
Freedman BI, Soucie JM, Stone SM, Pegram S.  Familial clustering of end-stage renal disease in blacks with HIV-associated nephropathy. Am J Kidney Dis. 1999; 34:254-8.
PubMed
 
Górriz JL, Rovira E, Sancho A, Ferrer R, Paricio A, Pallardó LM.  IgA nephropathy associated with human immuno deficiency virus infection: antiproteinuric effect of captopril [Letter]. Nephrol Dial Transplant. 1997; 12:2796-7.
PubMed
 
Boix E, Rivera F, Gil CM, Pérez-Contreras J, Olivares J.  Steroid-responsive nephrotic syndrome with minimal-change disease and IgA deposits in a HIV-infected patient. Nephrol Dial Transplant. 2000; 15:412-4.
PubMed
 
Mattana J, Siegal FP, Schwarzwald E, Molho L, Sankaran RT, Gooneratne R, et al..  AIDS-associated membranous nephropathy with advanced renal failure: response to prednisone. Am J Kidney Dis. 1997; 30:116-9.
PubMed
 
Bourgoignie JJ.  Renal complications of human immunodeficiency virus type 1. Kidney Int. 1990; 37:1571-84.
PubMed
 
Klotman PE.  HIV-associated nephropathy. Kidney Int. 1999; 56:1161-76.
PubMed
 
D'Agati V, Appel GB.  HIV infection and the kidney. J Am Soc Nephrol. 1997; 8:138-52.
PubMed
 
Winston JA, Klotman ME, Klotman PE.  HIV-associated nephropathy is a late, not early, manifestation of HIV-1 infection. Kidney Int. 1999; 55:1036-40.
PubMed
 
Wali RK, Drachenberg CI, Papadimitriou JC, Keay S, Ramos E.  HIV-1-associated nephropathy and response to highly-active antiretroviral therapy [Letter]. Lancet. 1998; 352:783-4.
PubMed
 
Levin ML, Palella F, Shah S, Lerma E, Butter J, Kanwar YS.  Hiv-associated nephropathy occurring before HIV antibody seroconversion. Am J Kidney Dis. 2001; 37:E39.
PubMed
 
Winston JA, Bruggeman LA, Ross MD, Jacobson J, Ross L, D'Agati VD, et al..  Nephropathy and establishment of a renal reservoir of HIV type 1 during primary infection. N Engl J Med. 2001; 344:1979-84.
PubMed
 
Cohen AH, Nast CC.  HIV-associated nephropathy. A unique combined glomerular, tubular, and interstitial lesion. Mod Pathol. 1988; 1:87-97.
PubMed
 
D'Agati V, Appel GB.  Renal pathology of human immunodeficiency virus infection. Semin Nephrol. 1998; 18:406-21.
PubMed
 
Strauss J, Abitbol C, Zilleruelo G, Scott G, Paredes A, Malaga S, et al..  Renal disease in children with the acquired immunodeficiency syndrome. N Engl J Med. 1989; 321:625-30.
PubMed
 
Kopp JB, Klotman ME, Adler SH, Bruggeman LA, Dickie P, Marinos NJ, et al..  Progressive glomerulosclerosis and enhanced renal accumulation of basement membrane components in mice transgenic for human immunodeficiency virus type 1 genes. Proc Natl Acad Sci U S A. 1992; 89:1577-81.
PubMed
 
Reid W, Sadowska M, Denaro F, Rao S, Foulke J Jr, Hayes N, et al..  An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc Natl Acad Sci U S A. 2001; 98:9271-6.
PubMed
 
Alpers CE, Tsai CC, Hudkins KL, Cui Y, Kuller L, Benveniste RE, et al..  Focal segmental glomerulosclerosis in primates infected with a simian immunodeficiency virus. AIDS Res Hum Retroviruses. 1997; 13:413-24.
PubMed
 
Stephens EB, Tian C, Dalton SB, Gattone VH 2nd.  Simian-human immunodeficiency virus-associated nephropathy in macaques. AIDS Res Hum Retroviruses. 2000; 16:1295-306.
PubMed
 
Marras D, Bruggeman LA, Gao F, Tanji N, Mansukhani MM, Cara A, et al..  Replication and compartmentalization of HIV-1 in kidney epithelium of patients with HIV-associated nephropathy. Nat Med. 2002; 8:522-6.
PubMed
 
Bruggeman LA, Ross MD, Tanji N, Cara A, Dikman S, Gordon RE, et al..  Renal epithelium is a previously unrecognized site of HIV-1 infection. J Am Soc Nephrol. 2000; 11:2079-87.
PubMed
 
Ross MJ, Klotman PE.  Recent progress in HIV-associated nephropathy. J Am Soc Nephrol. 2002; 13:2997-3004.
PubMed
 
Bodi I, Abraham AA, Kimmel PL.  Macrophages in HIV nephropathy. Am J Kidney Dis. 1994; 24:762-767.
 
Segerer S, Nelson PJ, Schlöndorff D.  Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies. J Am Soc Nephrol. 2000; 11:152-76.
PubMed
 
Kinter A, Arthos J, Cicala C, Fauci AS.  Chemokines, cytokines and HIV: a complex network of interactions that influence HIV pathogenesis. Immunol Rev. 2000; 177:88-98.
PubMed
 
Carrington M, Dean M, Martin MP, O'Brien SJ.  Genetics of HIV-1 infection: chemokine receptor CCR5 polymorphism and its consequences. Hum Mol Genet. 1999; 8:1939-45.
PubMed
 
Conaldi PG, Biancone L, Bottelli A, Wade-Evans A, Racusen LC, Boccellino M, et al..  HIV-1 kills renal tubular epithelial cells in vitro by triggering an apoptotic pathway involving caspase activation and Fas upregulation. J Clin Invest. 1998; 102:2041-9.
PubMed
 
Huber TB, Reinhardt HC, Exner M, Burger JA, Kerjaschki D, Saleem MA, et al..  Expression of functional CCR and CXCR chemokine receptors in podocytes. J Immunol. 2002; 168:6244-52.
PubMed
 
Eitner F, Cui Y, Hudkins KL, Stokes MB, Segerer S, Mack M, et al..  Chemokine receptor CCR5 and CXCR4 expression in HIV-associated kidney disease. J Am Soc Nephrol. 2000; 11:856-67.
PubMed
 
Bódi I, Kimmel PL, Abraham AA, Svetkey LP, Klotman PE, Kopp JB.  Renal TGF-β in HIV-associated kidney diseases. Kidney Int. 1997; 51:1568-77.
PubMed
 
Kimmel PL, Cohen DJ, Abraham AA, Bodi I, Schwartz AM, Phillips TM.  Upregulation of MHC class II, interferon-α and interferon-γ receptor protein expression in HIV-associated nephropathy. Nephrol Dial Transplant. 2003; 18:285-92.
PubMed
 
Bódi I, Abraham AA, Kimmel PL.  Apoptosis in human immunodeficiency virus-associated nephropathy. Am J Kidney Dis. 1995; 26:286-91.
PubMed
 
Bruggeman LA, Dikman S, Meng C, Quaggin SE, Coffman TM, Klotman PE.  Nephropathy in human immunodeficiency virus-1 transgenic mice is due to renal transgene expression. J Clin Invest. 1997; 100:84-92.
PubMed
 
Kimmel PL, Bosch JP, Vassalotti JA.  Treatment of human immunodeficiency virus (HIV)-associated nephropathy. Semin Nephrol. 1998; 18:446-58.
PubMed
 
Smith MC, Austen JL, Carey JT, Emancipator SN, Herbener T, Gripshover B, et al..  Prednisone improves renal function and proteinuria in human immunodeficiency virus-associated nephropathy. Am J Med. 1996; 101:41-8.
PubMed
 
Sothinathan R, Briggs WA, Eustace JA.  Treatment of HIV-associated nephropathy. AIDS Patient Care STDS. 2001; 15:363-71.
PubMed
 
Winston JA, Burns GC, Klotman PE.  Treatment of HIV-associated nephropathy. Semin Nephrol. 2000; 20:293-8.
PubMed
 
Eustace JA, Nuermberger E, Choi M, Scheel PJ Jr, Moore R, Briggs WA.  Cohort study of the treatment of severe HIV-associated nephropathy with corticosteroids. Kidney Int. 2000; 58:1253-60.
PubMed
 
Kimmel PL, Mishkin GJ, Umana WO.  Captopril and renal survival in patients with human immunodeficiency virus nephropathy. Am J Kidney Dis. 1996; 28:202-8.
PubMed
 
Burns GC, Paul SK, Toth IR, Sivak SL.  Effect of angiotensin-converting enzyme inhibition in HIV-associated nephropathy. J Am Soc Nephrol. 1997; 8:1140-6.
PubMed
 
Bird JE, Durham SK, Giancarli MR, Gitlitz PH, Pandya DG, Dambach DM, et al..  Captopril prevents nephropathy in HIV-transgenic mice. J Am Soc Nephrol. 1998; 9:1441-7.
PubMed
 
Cosgrove CJ, Abu-Alfa AK, Perazella MA.  Observations on HIV-associated renal disease in the era of highly active antiretroviral therapy. Am J Med Sci. 2002; 323:102-6.
PubMed
 
Kirchner JT.  Resolution of renal failure after initiation of HAART: 3 cases and a discussion of the literature. AIDS Read. 2002; 12:103-5, 110-2.
PubMed
 
Szczech LA, Edwards LJ, Sanders LL, van der Horst C, Bartlett JA, Heald AE, et al..  Protease inhibitors are associated with a slowed progression of HIV-related renal diseases. Clin Nephrol. 2002; 57:336-41.
PubMed
 
Ahuja TS, Borucki M, Grady J.  Highly active antiretroviral therapy improves survival of HIV-infected hemodialysis patients. Am J Kidney Dis. 2000; 36:574-80.
PubMed
 
Ahuja TS, Grady J, Khan S.  Changing trends in the survival of dialysis patients with human immunodeficiency virus in the United States. J Am Soc Nephrol. 2002; 13:1889-93.
PubMed
 
Gow PJ, Pillay D, Mutimer D.  Solid organ transplantation in patients with HIV infection. Transplantation. 2001; 72:177-81.
PubMed
 
Murphy B, Carlson L, Rohal S, Keller M, Lu A, Kumar MSA, et al..  Renal transplantation in HIV-infected recipients: twenty-three cases in the HAART era [Abstract]. J Am Soc Nephrol. 2002; 13:11A.
 
Halpern SD, Ubel PA, Caplan AL.  Solid-organ transplantation in HIV-infected patients. N Engl J Med. 2002; 347:284-7.
PubMed
 
Kuo PC, Stock PG.  Transplantation in the HIV+ patient. Am J Transplant. 2001; 1:13-7.
PubMed
 
Roland ME, Stock PG.  Review of solid-organ transplantation in HIV-infected patients. Transplantation. 2003; 75:425-9.
PubMed
 
Dybul M, Fauci AS, Bartlett JG, Kaplan JE, Pau AK.  Guidelines for using antiretroviral agents among HIV-infected adults and adolescents. Ann Intern Med. 2002; 137:381-433.
PubMed
 
Klotman P, Klotman M.  Editorial comment: renal insufficiency in HIV-infected patients may not always be HIVAN. AIDS Read. 2002; 12:273.
PubMed
 
Valeri A, Barisoni L, Appel GB, Seigle R, D'Agati V.  Idiopathic collapsing focal segmental glomerulosclerosis: a clinicopathologic study. Kidney Int. 1996; 50:1734-46.
PubMed
 
D'Agati V.  The many masks of focal segmental glomerulosclerosis. Kidney Int. 1994; 46:1223-41.
PubMed
 
Schwartz MM, Korbet SM, Rydell J, Borok R, Genchi R.  Primary focal segmental glomerular sclerosis in adults: prognostic value of histologic variants. Am J Kidney Dis. 1995; 25:845-52.
PubMed
 
Schwimmer JA, Markowitz GS, Valeri A, Appel GB.  Collapsing glomerulopathy. Semin Nephrol. 2003; 23:209-18.
PubMed
 
Barisoni L, Kriz W, Mundel P, D'Agati V.  The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol. 1999; 10:51-61.
PubMed
 
Barisoni L, Bruggeman LA, Mundel P, D'Agati VD, Klotman PE.  HIV-1 induces renal epithelial dedifferentiation in a transgenic model of HIV-associated nephropathy. Kidney Int. 2000; 58:173-81.
PubMed
 
Bariéty J, Nochy D, Mandet C, Jacquot C, Glotz D, Meyrier A.  Podocytes undergo phenotypic changes and express macrophagic-associated markers in idiopathic collapsing glomerulopathy. Kidney Int. 1998; 53:918-25.
PubMed
 
Barisoni L, Mokrzycki M, Sablay L, Nagata M, Yamase H, Mundel P.  Podocyte cell cycle regulation and proliferation in collapsing glomerulopathies. Kidney Int. 2000; 58:137-43.
PubMed
 
Shankland SJ, Eitner F, Hudkins KL, Goodpaster T, D'Agati V, Alpers CE.  Differential expression of cyclin-dependent kinase inhibitors in human glomerular disease: role in podocyte proliferation and maturation. Kidney Int. 2000; 58:674-83.
PubMed
 
Barisoni L, Kopp JB.  Modulation of podocyte phenotype in collapsing glomerulopathies. Microsc Res Tech. 2002; 57:254-62.
PubMed
 
Dickie P, Felser J, Eckhaus M, Bryant J, Silver J, Marinos N, et al..  HIV-associated nephropathy in transgenic mice expressing HIV-1 genes. Virology. 1991; 185:109-19.
PubMed
 
Ross MJ, Bruggeman LA, Wilson PD, Klotman PE.  Microcyst formation and HIV-1 gene expression occur in multiple nephron segments in HIV-associated nephropathy. J Am Soc Nephrol. 2001; 12:2645-51.
PubMed
 
Bauer FA, Wear DJ, Angritt P, Lo SC.  Mycoplasma fermentans (incognitus strain) infection in the kidneys of patients with acquired immunodeficiency syndrome and associated nephropathy: a light microscopic, immunohistochemical, and ultrastructural study. Hum Pathol. 1991; 22:63-9.
PubMed
 
Li RM, Branton MH, Tanawattanacharoen S, Falk RA, Jennette JC, Kopp JB.  Molecular identification of SV40 infection in human subjects and possible association with kidney disease. J Am Soc Nephrol. 2002; 13:2320-30.
PubMed
 
Yamamoto T, Noble NA, Cohen AH, Nast CC, Hishida A, Gold LI, et al..  Expression of transforming growth factor-β isoforms in human glomerular diseases. Kidney Int. 1996; 49:461-9.
PubMed
 
Ray PE, Liu XH, Henry D, Dye L 3rd, Xu L, Orenstein JM, et al..  Infection of human primary renal epithelial cells with HIV-1 from children with HIV-associated nephropathy. Kidney Int. 1998; 53:1217-29.
PubMed
 
Green DF, Resnick L, Bourgoignie JJ.  HIV infects glomerular endothelial and mesangial but not epithelial cells in vitro. Kidney Int. 1992; 41:956-60.
PubMed
 
Alpers CE, McClure J, Bursten SL.  Human mesangial cells are resistant to productive infection by multiple strains of human immunodeficiency virus types 1 and 2. Am J Kidney Dis. 1992; 19:126-30.
PubMed
 
Tokizawa S, Shimizu N, Hui-Yu L, Deyu F, Haraguchi Y, Oite T, et al..  Infection of mesangial cells with HIV and SIV: identification of GPR1 as a coreceptor. Kidney Int. 2000; 58:607-17.
PubMed
 
Cohen AH, Sun NC, Shapshak P, Imagawa DT.  Demonstration of human immunodeficiency virus in renal epithelium in HIV-associated nephropathy. Mod Pathol. 1989; 2:125-8.
PubMed
 
Kimmel PL, Phillips TM, Tinkle BT, Jay G.  HIV accessory proteins and transforming growth factor-β1 are associated with nephropathy in a transgenic mouse model [Abstract]. J Invest Med. 1996; 44:321A.
 
Kajiyama W, Klotman PE, Dickie P, Kopp JB.  HIV-1 genes are expressed in glomerular and tubular epithelial cells in HIV-transgenic mouse kidney. AIDS Res Hum Retroviruses. 1995; 11:supplS153.
 
Hanna Z, Kay DG, Rebai N, Guimond A, Jothy S, Jolicoeur P.  Nef harbors a major determinant of pathogenicity for an AIDS-like disease induced by HIV-1 in transgenic mice. Cell. 1998; 95:163-75.
PubMed
 
Kopp JB, Winkler CA.  HIV-associated nephropathy in African Americans. Kidney Int. 2003; 63:S43-9.
 
Kopp JB, Vlahov D, Macalino G, et al..  Candidate gene analysis in focal segmental glomerulosclerosis among African-Americans [Abstract]. J Am Soc Nephrol. 1998; 9:A1997.
 
Marre M, Jeunemaitre X, Gallois Y, Rodier M, Chatellier G, Sert C, et al..  Contribution of genetic polymorphism in the renin-angiotensin system to the development of renal complications in insulin-dependent diabetes: Genetique de la Nephropathie Diabetique (GENEDIAB) study group. J Clin Invest. 1997; 99:1585-95.
PubMed
 
Yoshida H, Mitarai T, Kawamura T, Kitajima T, Miyazaki Y, Nagasawa R, et al..  Role of the deletion of polymorphism of the angiotensin converting enzyme gene in the progression and therapeutic responsiveness of IgA nephropathy. J Clin Invest. 1995; 96:2162-9.
PubMed
 
Lee DY, Kim W, Kang SK, Koh GY, Park SK.  Angiotensin-converting enzyme gene polymorphism in patients with minimal-change nephrotic syndrome and focal segmental glomerulosclerosis. Nephron. 1997; 77:471-3.
PubMed
 
Hori C, Hiraoka M, Yoshikawa N, Tsuzuki K, Yoshida Y, Yoshioka K, et al..  Significance of ACE genotypes and medical treatments in childhood focal glomerulosclerosis. Nephron. 2001; 88:313-9.
PubMed
 
Bloem LJ, Manatunga AK, Pratt JH.  Racial difference in the relationship of an angiotensin I-converting enzyme gene polymorphism to serum angiotensin I-converting enzyme activity. Hypertension. 1996; 27:62-6.
PubMed
 

Letters

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Comments

Submit a Comment
Submit a Comment

Summary for Patients

Clinical Slide Sets

Terms of Use

The In the Clinic® slide sets are owned and copyrighted by the American College of Physicians (ACP). All text, graphics, trademarks, and other intellectual property incorporated into the slide sets remain the sole and exclusive property of the ACP. The slide sets may be used only by the person who downloads or purchases them and only for the purpose of presenting them during not-for-profit educational activities. Users may incorporate the entire slide set or selected individual slides into their own teaching presentations but may not alter the content of the slides in any way or remove the ACP copyright notice. Users may make print copies for use as hand-outs for the audience the user is personally addressing but may not otherwise reproduce or distribute the slides by any means or media, including but not limited to sending them as e-mail attachments, posting them on Internet or Intranet sites, publishing them in meeting proceedings, or making them available for sale or distribution in any unauthorized form, without the express written permission of the ACP. Unauthorized use of the In the Clinic slide sets will constitute copyright infringement.

Toolkit

Want to Subscribe?

Learn more about subscription options

Advertisement

Want to Subscribe?

Learn more about subscription options

Forgot your password?
Enter your username and email address. We'll send you a reminder to the email address on record.
(Required)
(Required)