0
Clinical Guidelines |

Evidence-Based Clinical Practice Guideline for the Prevention of Ventilator-Associated Pneumonia FREE

Peter Dodek, MD, MHSc; Sean Keenan, MD, MSc(Epid); Deborah Cook, MD, MSc(Epid); Daren Heyland, MD, MSc(Epid); Michael Jacka, MD, MSc; Lori Hand, RRT; John Muscedere, MD; Debra Foster, RN; Nav Mehta, MD; Richard Hall, MD; Christian Brun-Buisson, MD, Canadian Critical Care Trials Group and the Canadian Critical Care Society
[+] Article and Author Information

From University of British Columbia, Vancouver, British Columbia, Canada; McMaster University, Hamilton, Queen's University, Kingston, Hotel-Dieu Grace Hospital, Windsor, University of Toronto, Toronto, and Sudbury Regional Hospital, Sudbury, Ontario, Canada; University of Alberta Hospital, Edmonton, Alberta, Canada; Dalhousie University, Halifax, Nova Scotia, Canada; and Hopital Henri Mondor, Universite Paris-Val de Marne, Creteil, France.


Acknowledgments: The authors thank the Canadian Critical Care Trials Group and Canadian Critical Care Society for their support of this initiative and the professional societies who reviewed and critiqued this guideline. The VAP Prevention Guideline Panel thanks Dr. John Heffner for his advice during the development of this guideline.

Grant Support: By an unrestricted grant from Pfizer Canada Inc. Dr. Cook is a chair of the Canadian Institutes for Health Research. Dr. Heyland is a Career Scientist of the Ontario Ministry of Health and Long-Term Care.

Potential Financial Conflicts of Interest:Grants received: D. Cook (Hoechst Marion Roussel, Glaxo Wellcome), D. Heyland (Bayer Inc., AstraZeneca), C. Brun-Buisson (Wyeth-Lederle).

Requests for Single Reprints: Peter Dodek, MD, MHSc, Center for Health Evaluation and Outcome Sciences, St. Paul's Hospital, 1081 Burrard Street, Vancouver, British Columbia V6Z 1Y6, Canada; e-mail, pedodek@interchange.ubc.ca.

Current Author Addresses: Dr. Dodek: St. Paul's Hospital, 1081 Burrard Street, Vancouver, British Columbia V6Z 1Y6, Canada.

Dr. Keenan: Suite 103, 250 Keary Street, New Westminster, British Columbia V3L 5E7, Canada.

Dr. Cook and Ms. Hand: McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada.

Dr. Heyland: Kingston General Hospital, 76 Stuart Street, Kingston, Ontario K7L 2V7, Canada.

Dr. Jacka: University of Alberta, 1051 Falconer Road, Edmonton, Alberta T6R 2C9, Canada.

Dr. Muscedere: Hotel-Dieu Grace Hospital, 1030 Ouellette Avenue, Windsor, Ontario N91 1E1, Canada.

Ms. Foster: Department of Critical Care, University of Toronto, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada.

Dr. Mehta: Sudbury Regional Hospital, 41 Ramsey Lake Road, Sudbury, Ontario P3E 5J1, Canada.

Dr. Hall: Queen Elizabeth II Health Sciences Center, 1796 Summer Street, Room 5452 HI, Halifax, Nova Scotia B3H 3A7, Canada.

Dr. Brun-Buisson: Department of Medical Intensive Care and Infection Control Unit, Hopital Henri Mondor, 51, avenue du Mal de Lattre de Tassigny, 94010 Creteil Cedex, France.


Ann Intern Med. 2004;141(4):305-313. doi:10.7326/0003-4819-141-4-200408170-00011
Text Size: A A A

Background: Ventilator-associated pneumonia (VAP) is an important patient safety issue in critically ill patients.

Purpose: To develop an evidence-based guideline for the prevention of VAP.

Data Sources: MEDLINE, EMBASE, and the Cochrane Database of Systematic Reviews.

Study Selection: The authors systematically searched for relevant randomized, controlled trials and systematic reviews that involved mechanically ventilated adults and were published before 1 April 2003.

Data Extraction: Physical, positional, and pharmacologic interventions that may influence the development of VAP were considered. Independently and in duplicate, the authors scored the validity of trials; the effect size and confidence intervals; the homogeneity of results; and safety, feasibility, and economic issues.

Data Synthesis: Recommended: The orotracheal route of intubation, changes of ventilator circuits only for each new patient and if the circuits are soiled, use of closed endotracheal suction systems that are changed for each new patient and as clinically indicated, heat and moisture exchangers in the absence of contraindications, weekly changes of heat and moisture exchangers, and semi-recumbent positioning in the absence of contraindications. Consider subglottic secretion drainage and kinetic beds. Not recommended: Sucralfate to prevent VAP in patients at high risk for gastrointestinal bleeding and topical antibiotics to prevent VAP. Because of insufficient or conflicting evidence, no recommendations were made about systematically searching for maxillary sinusitis, chest physiotherapy, the timing of tracheostomy, prone positioning, prophylactic intravenous antibiotics, or intravenous plus topical antibiotics.

Limitations: No formal economic analysis was performed, and patient perspectives were not considered.

Conclusion: If effectively implemented, this guideline may decrease the morbidity, mortality, and costs of VAP in mechanically ventilated patients.

Critically ill patients in the intensive care unit (ICU) are at high risk for infections associated with increased morbidity, mortality, and health care costs (13). The overall infection rate in critically ill patients approaches 40% and may be as high as 50% or 60% in patients who remain in the ICU for more than 5 days (45). Respiratory tract infections account for 30% to 60% of all such infections. The incidence of pneumonia acquired in the ICU ranges from 10% to 65% (611). Among patients at high risk for ventilator-associated pneumonia (VAP) are those who have chronic obstructive pulmonary disease, burns, neurosurgical conditions, the acute respiratory distress syndrome, and witnessed aspiration; those who are reintubated; and those who receive paralytic agents or enteral nutrition (1213).

The attributable morbidity and mortality of VAP are clinically important. In a prospective, matched cohort study, patients with VAP remained in the ICU 4.3 days (95% CI, 1.5 to 7.0 days) longer than patients who did not have VAP and had a trend toward an increased risk for death (absolute risk increase, 5.8% [CI, −2.4% to 14.0%]) (14). Six other studies using a matching strategy found a prolonged length of ICU stay associated with VAP (range, 5 to 13 days) and attributable mortality ranging from an absolute risk increase of 0% to 50% (1520). Therefore, strategies to decrease the incidence of VAP could decrease morbidity, mortality, and health care costs and improve patient safety.

A survey of the use of VAP prevention strategies identified differences across countries (21). For example, changing the ventilator circuit for each new patient was reported more frequently by French ICU directors than those in Canada (21). This survey also showed that some effective strategies were used infrequently, suggesting inadequate translation of randomized trial results into practice. One potential catalyst for knowledge translation is an evidence-based clinical practice guideline. Therefore, a Joint Planning Group of the Canadian Critical Care Society and Canadian Critical Care Trials Group commissioned the development of an evidence-based clinical practice guideline for the prevention of VAP. In this paper, we describe the methods used to create the guideline and the recommendations generated.

The Joint Planning Group selected an 11-member VAP Prevention Guideline Panel made up of 9 intensivists from university-affiliated and community hospitals, an ICU nurse, and an ICU respiratory therapist. Panel members were experts in critical care medicine (n = 9), VAP (n = 4), evidence-based medicine (n = 4), and guideline development (n = 3). The context was mechanically ventilated adult patients cared for in the ICU. The target audience was ICU clinicians in university-affiliated and community hospitals.

To identify potentially relevant evidence, we searched 3 bibliographic databases (MEDLINE, EMBASE, and the Cochrane Database of Systematic Reviews) to 1 April 2003 for randomized trials that evaluated interventions influencing VAP (Appendix). We had no language restrictions. We also reviewed personal files and practice guidelines on this subject previously published by the Centers for Disease Control and Prevention (22) and the American Thoracic Society (23).

We included randomized trials and systematic reviews of randomized trials that 1) studied adult critically ill patients; 2) had VAP as an outcome; and 3) evaluated any of the following interventions: physical strategies (route of endotracheal intubation, systematic search for maxillary sinusitis, frequency of ventilator circuit changes, type of airway humidification, frequency of humidifier changes, endotracheal suctioning system, subglottic secretion drainage, chest physiotherapy, and tracheostomy timing), positional strategies (kinetic beds, semi-recumbent positioning, and prone positioning), and pharmacologic strategies (stress ulcer prophylaxis and prophylactic antibiotics, including selective decontamination of the digestive tract). Since study authors used various definitions of VAP, we used the definitions they provided. The most common definition was a new or persistent radiographic infiltrate plus fever, leukocytosis, change in the volume or color of sputum, or isolation of a pathogen. If available, histologic evidence of pneumonia was also used. A priori, we decided to review only systematic reviews of randomized clinical trials for antibiotic prophylaxis and only randomized clinical trials for all other topics. We excluded crossover and before–after studies. We also excluded randomized trials of ventilator weaning, including noninvasive mechanical ventilation, and nutritional interventions evaluating VAP because guidelines addressing these topics have recently been published (2425).

In duplicate and independently, 3 pairs of panel members critically appraised each trial (2627) and systematic review (28). Each member of a pair compared his or her independent appraisal of a given trial or systematic review with that of the other member of the pair. For each randomized trial, we abstracted sample, allocation, intervention, co-interventions, exclusions after randomization, blinding of outcome assessment, definition of VAP, crude VAP events, relative risk for VAP, and other outcomes. For each intervention, we summarized the risk differences and calculated a pooled risk difference. For each systematic review, we abstracted number of trials, population, intervention, selection criteria, search strategy, validity assessment, method of pooling results, homogeneity assessment, VAP definition, pooled event rates, and other outcomes. Before the panel meeting, each pair of appraisers achieved consensus on the validity and results of the trials they reviewed. One month before the panel meeting, panel members received the evidence tables for review prepared by the 3 pairs of appraisers. A priori, panel members agreed to read all circulated documents and evidence tables in advance, to use levels of evidence to generate a status statement for each item, and to abide by the group process and consensus methods. The Canadian Critical Care Society appointed a chair to ensure that the panel achieved its objectives through group process (29).

At the panel meeting, each member recorded any potential conflicts of interest (30). The pair of panel members responsible for critical appraisal of each intervention provided a structured written and oral presentation of the evidence. After the panel discussion, the initial evidence summary was revised if necessary. The panel members assigned levels of evidence, semi-quantitative scores to summarize the evidence and describe the intervention, and a status statement. We classified trials as level 1 if they had all of the following: concealed randomization, blinded outcome adjudication, an intention-to-treat analysis, and an explicit definition of VAP. Trials were classified as level 2 if any one of these characteristics was unfulfilled and as level 3 if allocation was not strictly randomized. We used a semi-quantitative score (0, 1, 2, or 3) to evaluate each intervention with respect to the validity of the randomized trials; the effect size of each intervention; the confidence intervals around the estimate of effect; the homogeneity of the trial results; and the safety, feasibility, and economic consequences of the intervention. The language of the status statement for each item was keyed to the levels of evidence and the semi-quantitative scores. We used the term recommended if there were no reservations about endorsing an intervention and the term considered if the evidence supported an intervention but there were minor uncertainties about the benefits, harms, or costs. No recommendation was made if evidence regarding an intervention was inadequate or if there were major uncertainties about the benefits, harms, or costs.

After the panel meeting, the chair compiled the summaries and status statements and sent them to all panel members to check accuracy and clarity. In addition, the pairs of evidence appraisers wrote background documents for the interventions they appraised, including the rationale for each intervention, appraisal of randomized trials and systematic reviews, and harms and costs of the interventions. The chair and the writing committee organized the background documents, the evidence summaries, a table of the semi-quantitative scores, and the status statement for each item. We formatted the document with a structured abstract (31), a summary of the evidentiary basis for each recommendation, and a status statement for each item. We also created a quick reference guide.

The draft guideline document was submitted for structured external review by the executives of the Canadian Critical Care Society and the Canadian Critical Care Trials Group and the respective executives of the Canadian Association of Critical Care Nurses, Canadian Society of Respiratory Therapists, Canadian Infectious Disease Society, and Canadian Thoracic Society. External reviewers were asked to critique whether the guideline was logical, clear, and practical and to critique the guideline development process. The panel revised the document on the basis of this feedback. The final guideline was returned to the external reviewers for further comments and official endorsement by their respective organizations. The final guideline was then piloted in 2 institutions.

To record the agreement of each panel member with the final status statement for each item, we sent the final document to all panel members. Independently, blinded to each other's ratings, panel members used a Likert scale from 1 to 9 that was anchored by “disagree completely” at the low end and “agree completely” at the high end. The panel will formally review and update this guideline every 2 years (32).

The funding source played no role in study selection for this guideline and had no role in its development, review, reporting, approval, or submission for publication.

The final summary statements, levels of evidence, and status statements for each of the interventions are reported. The semi-quantitative scores for each intervention are presented in Table 1, and the agreement scores for each panel member are presented in Table 2.

Table Jump PlaceholderTable 1.  Semi-quantitative Scores of Strategies To Prevent Ventilator-Associated Pneumonia
Table Jump PlaceholderTable 2.  Agreement Scores of Panel Members with the Final Status of Each Item
Physical Strategies
Route of Endotracheal Intubation

On the basis of direct evidence from one level 2 trial (33), we conclude that orotracheal intubation is associated with a lower incidence of VAP compared with nasotracheal intubation. Furthermore, this trial and four other level 2 trials (3437) have found that orotracheal intubation is associated with a decreased incidence of sinusitis and that incidence of VAP is lower in patients who do not develop sinusitis.

Status: We recommend that the orotracheal route of intubation should be used when intubation is necessary.

Systematic Search for Maxillary Sinusitis

On the basis of one randomized, controlled trial (38), we conclude that while a systematic search for maxillary sinusitis in patients who are intubated by the nasotracheal route may decrease the incidence of VAP, no evidence supports this practice in patients who are intubated by the orotracheal route.

Status: We make no recommendation because of insufficient evidence.

Frequency of Ventilator Circuit Changes

On the basis of evidence from one level 2 trial (39) and two level 3 trials (4041), we conclude that the frequency of ventilator circuit changes does not influence the incidence of VAP. Less frequent changes of ventilator circuits are not associated with harm, and more frequent changes are associated with increased cost.

Status: We recommend new circuits for each patient, and changes if the circuits become soiled, but no scheduled ventilator circuit changes.

Airway Humidification

Type of Humidifier. On the basis of evidence from seven level 2 trials (4248), we conclude that the use of heat and moisture exchangers may be associated with a slightly decreased incidence of VAP compared with heated humidifiers. Concern about endotracheal tube obstruction associated with the use of heat and moisture exchangers has not been confirmed in recent studies that have evaluated newer heat and moisture exchangers. Cost considerations favor the use of heat and moisture exchangers.

Status: We recommend the use of heat and moisture exchangers in patients who have no contraindications (such as hemoptysis or requirement for high minute ventilation).

Frequency of Humidifier Changes. On the basis of evidence from three level 2 trials (4951), infrequent changes to heat and moisture exchangers may be associated with a slightly decreased incidence of VAP. Reduction in the frequency of humidifier changes might be considered as a cost-reduction measure.

Status: We recommend weekly changes of heat and moisture exchangers.

Endotracheal Suctioning System

On the basis of evidence from two level 2 trials (5253) and two level 3 trials (5455), we conclude that type of suctioning systems (open or closed) has no effect on the incidence of VAP. On the basis of evidence from one level 2 trial (56), we conclude that scheduled daily changes and unscheduled changes of closed suctioning systems have no effect on the incidence of VAP. Cost considerations favor the use of closed suctioning systems that are changed only as clinically indicated.

Status: We recommend the use of closed endotracheal suction systems that are changed for each new patient and as clinically indicated.

Subglottic Secretion Drainage

On the basis of evidence from five level 2 trials (5761), we conclude that subglottic secretion drainage is associated with decreased incidence of VAP, especially early-onset VAP.

Status: We recommend that clinicians consider the use of subglottic secretion drainage.

Chest Physiotherapy

On the basis of evidence from one level 3 trial (62), we conclude that chest physiotherapy may be associated with decreased incidence of VAP. However, methodologic limitations of this level 3 trial and the lack of feasibility of universal application preclude widespread use of this intervention.

Status: We make no recommendation.

Timing of Tracheostomy

On the basis of evidence from one level 2 trial (63) and two level 3 trials (6465), we conclude that there is no difference in incidence of VAP between early tracheostomy and late tracheostomy. However, serious methodologic flaws threaten the validity of these trials.

Status: We make no recommendation because of insufficient evidence.

Positional Strategies
Kinetic Bed Therapy

On the basis of evidence from seven level 2 trials (6672) and one level 3 trial (73), we conclude that the use of kinetic beds is associated with decreased incidence of VAP. However, feasibility and cost concerns may be barriers to implementation.

Status: We recommend that clinicians consider the use of kinetic beds.

Semi-recumbent Positioning

On the basis of evidence from one level 2 trial (74), we conclude that semi-recumbent positioning (caring for patients positioned at 45 degrees from horizontal) is associated with decreased incidence of VAP. Semi-recumbent positioning may be unsafe for some patients but is a feasible and low-cost intervention.

Status: We recommend the use of semi-recumbent positioning, with a goal of 45 degrees, in patients without contraindications.

Prone Positioning

On the basis of evidence from one level 2 trial (75), we conclude that use of prone positioning may be associated with decreased incidence of VAP. However, methodologic concerns about this trial and the lack of feasibility of universal application preclude widespread use of this intervention.

Status: We make no recommendation.

Pharmacologic Strategies
Stress Ulcer Prophylaxis

In patients at very low risk for clinically important bleeding (for example, those spontaneously breathing without coagulopathy), the best option to minimize the risk for VAP is to avoid stress ulcer prophylaxis. In high-risk patients (those who require mechanical ventilation for >48 hours or have coagulopathy), the risk for bleeding should be balanced against the risk for VAP. On the basis of evidence from two level 2 trials (7677), we conclude that the use of sucralfate does not influence the incidence of VAP compared with placebo.

Status: We recommend that sucralfate not be used to minimize the risk for VAP in patients at high risk for stress ulcer bleeding.

Prophylactic Antibiotics, Including Selective Decontamination of the Digestive Tract

On the basis of evidence from 10 meta-analyses (7887), we conclude that selective digestive decontamination using topical antibiotics (intratracheal or oral) or intravenous and topical antibiotics is associated with a decreased incidence of VAP. Cost-effectiveness of selective digestive decontamination is of unknown magnitude. The long-term risk for emergence of antibiotic-resistant bacteria when topical antibiotics are administered in the digestive tract or the trachea is unclear and is potentially harmful. Furthermore, only the combination of intravenous and topical antibiotics is associated with a decrease in mortality.

Status: We recommend that topical antibiotics alone not be used. We make no recommendations regarding selective digestive decontamination using intravenous and topical antibiotics because of insufficient data about antibiotic resistance and cost-effectiveness. We make no recommendation regarding intravenous antibiotics alone because of insufficient evidence.

The VAP prevention guidelines published in 1994 by the Centers for Disease Control and Prevention (23) and in 1995 by the American Thoracic Society (24) provided a strong foundation for our work. However, these documents did not explicitly outline how evidence was identified, interpreted, or integrated into recommendations. Our guideline is based on interventions tested in randomized trials that were in turn critically appraised with respect to study validity; the magnitude, precision, and homogeneity of the intervention's effect on VAP; and the safety, feasibility, and cost of the intervention. We used structured evidence reviews (88) to generate evidence-based practice guidelines (89).

Other strengths of this guideline include the detailed, explicit processes used to search for, select, and appraise the evidence (90); the multidisciplinary panel; and the panel's balance of university-based and community-based clinicians. In addition, the external reviewers represented nursing, respiratory therapy, respirology, infectious diseases, and critical care. To translate the findings into status statements, we used a semi-quantitative score to evaluate 7 domains for each intervention, integrating evidence and judgment about safety, feasibility, and cost. These judgments were based on qualitative and relative comparisons with other interventions in Canadian ICUs. For example, the feasibility and cost concerns related to kinetic beds reflected increased nursing workload and significant rental or retail costs, respectively. We used a transparent method to grade the evidence and a final score to reflect the panelists' confidential agreement with each status statement (91). The panel also highlighted areas that were unsuitable for evidence-based recommendations but suitable for future research (92). These include the systematic search for maxillary sinusitis among mechanically ventilated patients, chest physiotherapy, prone positioning, the timing of tracheostomy, and intravenous or intravenous plus topical antibiotic prophylaxis as interventions to prevent VAP. Further randomized trials of VAP prevention strategies are necessary since practice guidelines, like systematic reviews (93), need to be updated as new evidence emerges and as values and health resources change (32).

This document meets the 3 quality criteria for a guideline from a specialty society as proposed by Grilli and colleagues (94); it describes the developers, the data sources, and the methods used to grade the status statements. This document also meets all 10 methodologic criteria on guideline development and 8 of 10 criteria on evidence identification and summary proposed by Shaneyfelt and colleagues (95). We did not specify the health care costs of implementing each intervention in specific practice settings because of the sparse reporting of economic outcomes in these trials, the absence of guideline implementation costs in the ICU, and the limited validity and generalizability of cost-effectiveness statements for these interventions within and among different health care systems (96). Finally, this document meets 20 of 20 criteria on the rigor of guideline development and 12 of 12 criteria on context and content proposed by Cluzeau and colleagues (97).

One aspect of guideline appraisal as proposed by Cluzeau and colleagues (97) focuses on 5 criteria addressing applicability in practice, including whether monitoring criteria, acceptable thresholds, and outcome measures for guideline adherence are specified; whether key considerations for local guideline groups are identified; and whether methods for dissemination and implementation are indicated. We believe that these criteria should be developed by guideline consumers regionally. While no evidence informs these issues, a strong body of evidence exists on effective dissemination and implementation methods, including academic detailing, opinion leaders, audit and feedback, interactive education, computer decision support systems, and multifaceted approaches (98). Prevention strategies for VAP that are behavioral instead of pharmacologic or technological may require different implementation techniques in the complex, dynamic setting of the ICU. Qualitative studies (99) and observational studies (100) can identify attitudinal and clinical barriers to implementing specific VAP prevention guidelines. We propose that the next steps for implementation of this guideline should be review by local clinician groups and adaptation to individual practice settings and health care systems.

Although there are several methods for development of practice guidelines (29, 9091, 101), critical appraisal of many guidelines reveals room for improvement. In an analysis of 279 guidelines from several sources, Shaneyfelt and colleagues found that that only 40% adhered to methodologic standards (95). A study of 217 guidelines for drug therapy (102) found that 15% met at least half of the criteria for rigorous development, 62% met at least half of the criteria for context and content, and none met at least half of the criteria for guideline application. In a critique of guidelines developed by specialty societies, Grilli and colleagues (94) found that 67% did not describe the stakeholders, 88% did not describe the literature searches, and 82% did not explicitly grade the strength of recommendations. Since endorsement by professional organizations influences physicians' confidence in guidelines (103104), it is crucial that guidelines developed by specialty societies are valid.

This guideline has several limitations. First, we did not elicit patient perspectives during the guideline development process. Second, we did not conduct formal economic evaluations for each intervention appraised. Third, we did not formally incorporate published economic analyses into the guideline development. During the latter phases of external review and final agreement measures, an economic evaluation was published (105), estimating that $1900 U.S. could be saved per case of VAP prevented by subglottic secretion drainage. Our statement to consider subglottic secretion drainage is thus supported.

Rigorous guideline development efforts are easily dwarfed by the skills and time of the experienced individuals needed to implement them (106). Evidence-based implementation of evidence-based medicine requires knowledge of the most successful strategies for behavior change (107). Rather than making recommendations about guideline implementation in the current document (101), we endorsed a programmatic approach. Thus, we separated the development of the guideline from its implementation and evaluation. Phase 1 of this program is development of this evidence-based VAP prevention guideline. Phase 2 is being led by a Guideline Implementation and Evaluation Panel, which is testing the clinical outcomes associated with different guideline implementation strategies in a multicenter trial. Only with effective implementation will guidelines have the potential to decrease the risk for VAP and its attendant morbidity and mortality in critically ill, mechanically ventilated patients.

Appendix

The search strategy used in the development of this guideline was as follows:

exp pneumonia/ or exp pneumonia, aspiration/ or “pneumonia”.mp. OR

exp respiratory tract infections/ or “respiratory tract infection”.mp OR

exp cross infection/ or “cross infection”.mp

AND

exp critical care/ or “critical care”.mp. OR

exp intensive care units/ or “intensive care unit”. mp

AND

exp clinical trials/ or exp randomized controlled trials/ or “controlled trials”.mp.

AND

exp prospective studies/ or “prospective studies”.mp

To increase the sensitivity of the search, we performed additional searches by using the terms mechanical ventilation, enteral nutrition, and nutrition instead of critical care and intensive care unit.

Girou E, Stephan F, Novara A, Safar M, Fagon JY.  Risk factors and outcome of nosocomial infections: results of a matched case-control study of ICU patients. Am J Respir Crit Care Med. 1998; 157:1151-8. PubMed
 
Bueno-Cavanillas A, Delgado-Rodriguez M, Lopez-Luque A, Schaffino-Cano S, Galvez-Vargas R.  Influence of nosocomial infection on mortality rate in an intensive care unit. Crit Care Med. 1994; 22:55-60. PubMed
 
de Clercq H, De Decker G, Alexander JP, Huyghens L.  Cost evaluation of infections in intensive care. Acta Anaesthesiol Belg. 1983; 34:179-89. PubMed
 
Vincent JL, Bihari DJ, Suter PM, Bruining HA, White J, Nicolas-Chanoin MH, et al..  The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA. 1995; 274:639-44. PubMed
CrossRef
 
Potgieter PD, Linton DM, Oliver S, Forder AA.  Nosocomial infections in a respiratory intensive care unit. Crit Care Med. 1987; 15:495-8. PubMed
 
Kerver AJ, Rommes JH, Mevissen-Verhage EA, Hulstaert PF, Vos A, Verhoef J, et al..  Colonization and infection in surgical intensive care patients—a prospective study. Intensive Care Med. 1987; 13:347-51. PubMed
 
Rello J, Quintana E, Ausina V, Castella J, Luquin M, Net A, et al..  Incidence, etiology, and outcome of nosocomial pneumonia in mechanically ventilated patients. Chest. 1991; 100:439-44. PubMed
 
Celis R, Torres A, Gatell JM, Almela M, Rodriguez-Roisin R, Agusti–-Vidal A.  Nosocomial pneumonia. A multivariate analysis of risk and prognosis. Chest. 1988; 93:318-24. PubMed
 
Craven DE, Kunches LM, Lichtenberg DA, Kollisch NR, Barry MA, Heeren TC, et al..  Nosocomial infection and fatality in medical and surgical intensive care unit patients. Arch Intern Med. 1988; 148:1161-8. PubMed
 
Jimenez P, Torres A, Rodriguez-Roisin R, de la Bellacasa JP, Aznar R, Gatell JM, et al..  Incidence and etiology of pneumonia acquired during mechanical ventilation. Crit Care Med. 1989; 17:882-5. PubMed
 
Fagon JY, Chastre J, Vuagnat A, Trouillet JL, Novara A, Gibert C.  Nosocomial pneumonia and mortality among patients in intensive care units. JAMA. 1996; 275:866-9. PubMed
 
Cook DJ, Kollef MH.  Risk factors for ICU-acquired pneumonia. JAMA. 1998; 279:1605-6. PubMed
 
Cook DJ, Walter SD, Cook RJ, Griffith LE, Guyatt GH, Leasa D, et al..  Incidence of and risk factors for ventilator-associated pneumonia in critically ill patients. Ann Intern Med. 1998; 129:433-40. PubMed
 
Heyland DK, Cook DJ, Griffith L, Keenan SP, Brun-Buisson C.  The attributable morbidity and mortality of ventilator-associated pneumonia in the critically ill patient. The Canadian Critical Trials Group. Am J Respir Crit Care Med. 1999; 159:1249-56. PubMed
 
Fagon JY, Chastre J, Hance AJ, Montravers P, Novara A, Gibert C.  Nosocomial pneumonia in ventilated patients: a cohort study evaluating attributable mortality and hospital stay. Am J Med. 1993; 94:281-8. PubMed
 
Baker AM, Meredith JW, Haponik EF.  Pneumonia in intubated trauma patients. Microbiology and outcomes. Am J Respir Crit Care Med. 1996; 153:343-9. PubMed
 
Cunnion KM, Weber DJ, Broadhead WE, Hanson LC, Pieper CF, Rutala WA.  Risk factors for nosocomial pneumonia: comparing adult critical-care populations. Am J Respir Crit Care Med. 1996; 153:158-62. PubMed
 
Craig CP, Connelly S.  Effect of intensive care unit nosocomial pneumonia on duration of stay and mortality. Am J Infect Control. 1984; 12:233-8. PubMed
 
Kappstein I, Schulgen G, Beyer U, Geiger K, Schumacher M, Daschner FD.  Prolongation of hospital stay and extra costs due to ventilator-associated pneumonia in an intensive care unit. Eur J Clin Microbiol Infect Dis. 1992; 11:504-8. PubMed
 
Papazian L, Bregeon F, Thirion X, Gregoire R, Saux P, Denis JP, et al..  Effect of ventilator-associated pneumonia on mortality and morbidity. Am J Respir Crit Care Med. 1996; 154:91-7. PubMed
 
Cook D, Ricard JD, Reeve B, Randall J, Wigg M, Brochard L, et al..  Ventilator circuit and secretion management strategies: a Franco-Canadian survey. Crit Care Med. 2000; 28:3547-54. PubMed
 
Tablan OC, Anderson LJ, Arden NH, Breiman RF, Butler JC, McNeil MM.  Guideline for prevention of nosocomial pneumonia. The Hospital Infection Control Practices Advisory Committee, Centers for Disease Control and Prevention. Am J Infect Control. 1994; 22:247-92. PubMed
 
.  Hospital-acquired pneumonia in adults: diagnosis, assessment of severity, initial antimicrobial therapy, and preventive strategies. A consensus statement, American Thoracic Society, November 1995. Am J Respir Crit Care Med. 1996; 153:1711-25. PubMed
 
MacIntyre NR, Cook DJ, Ely EW Jr, Epstein SK, Fink JB, Heffner JE, et al..  Evidence-based guidelines for weaning and discontinuing ventilatory support: a collective task force facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest. 2001; 120:375S-95S. PubMed
 
Heyland DK, Dhaliwal R, Drover JW, Gramlich L, Dodek P.  Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr. 2003; 27:355-73. PubMed
 
Guyatt GH, Sackett DL, Cook DJ.  Users' guides to the medical literature. II. How to use an article about therapy or prevention. B. What were the results and will they help me in caring for my patients? Evidence-Based Medicine Working Group. JAMA. 1994; 271:59-63. PubMed
 
Guyatt GH, Sackett DL, Cook DJ.  Users' guides to the medical literature. II. How to use an article about therapy or prevention. A. Are the results of the study valid? Evidence-Based Medicine Working Group. JAMA. 1993; 270:2598-601. PubMed
 
Oxman AD, Cook DJ, Guyatt GH.  Users' guides to the medical literature. VI. How to use an overview. Evidence-Based Medicine Working Group. JAMA. 1994; 272:1367-71. PubMed
 
Shekelle PG, Woolf SH, Eccles M, Grimshaw J.  Clinical guidelines: developing guidelines. BMJ. 1999; 318:593-6. PubMed
 
Choudhry NK, Stelfox HT, Detsky AS.  Relationships between authors of clinical practice guidelines and the pharmaceutical industry. JAMA. 2002; 287:612-7. PubMed
 
Hayward RS, Wilson MC, Tunis SR, Bass EB, Rubin HR, Haynes RB.  More informative abstracts of articles describing clinical practice guidelines. Ann Intern Med. 1993; 118:731-7. PubMed
 
Shekelle P, Eccles MP, Grimshaw JM, Woolf SH.  When should clinical guidelines be updated? BMJ. 2001; 323:155-7. PubMed
 
Holzapfel L, Chevret S, Madinier G, Ohen F, Demingeon G, Coupry A, et al..  Influence of long-term oro- or nasotracheal intubation on nosocomial maxillary sinusitis and pneumonia: results of a prospective, randomized, clinical trial. Crit Care Med. 1993; 21:1132-8. PubMed
 
Salord F, Gaussorgues P, Marti-Flich J, Sirodot M, Allimant C, Lyonnet D, et al..  Nosocomial maxillary sinusitis during mechanical ventilation: a prospective comparison of orotracheal versus the nasotracheal route for intubation. Intensive Care Med. 1990; 16:390-3. PubMed
 
Michelson A, Kamp HD, Schuster B.  [Sinusitis in long-term intubated, intensive care patients: nasal versus oral intubation]. Anaesthesist. 1991; 40:100-4. PubMed
 
Bach A, Boehrer H, Schmidt H, Geiss HK.  Nosocomial sinusitis in ventilated patients. Nasotracheal versus orotracheal intubation. Anaesthesia. 1992; 47:335-9. PubMed
 
Rouby JJ, Laurent P, Gosnach M, Cambau E, Lamas G, Zouaoui A, et al..  Risk factors and clinical relevance of nosocomial maxillary sinusitis in the critically ill. Am J Respir Crit Care Med. 1994; 150:776-83. PubMed
 
Holzapfel L, Chastang C, Demingeon G, Bohe J, Piralla B, Coupry A.  A randomized study assessing the systematic search for maxillary sinusitis in nasotracheally mechanically ventilated patients. Influence of nosocomial maxillary sinusitis on the occurrence of ventilator-associated pneumonia. Am J Respir Crit Care Med. 1999; 159:695-701. PubMed
 
Kollef MH, Shapiro SD, Fraser VJ, Silver P, Murphy DM, Trovillion E, et al..  Mechanical ventilation with or without 7-day circuit changes. A randomized controlled trial. Ann Intern Med. 1995; 123:168-74. PubMed
 
Dreyfuss D, Djedaini K, Weber P, Brun P, Lanore JJ, Rahmani J, et al..  Prospective study of nosocomial pneumonia and of patient and circuit colonization during mechanical ventilation with circuit changes every 48 hours versus no change. Am Rev Respir Dis. 1991; 143:738-43. PubMed
 
Long MN, Wickstrom G, Grimes A, Benton CF, Belcher B, Stamm AM.  Prospective, randomized study of ventilator-associated pneumonia in patients with one versus three ventilator circuit changes per week. Infect Control Hosp Epidemiol. 1996; 17:14-9. PubMed
 
Martin C, Perrin G, Gevaudan MJ, Saux P, Gouin F.  Heat and moisture exchangers and vaporizing humidifiers in the intensive care unit. Chest. 1990; 97:144-9. PubMed
 
Roustan JP, Kienlen J, Aubas P, Aubas S, du Cailar J.  Comparison of hydrophobic heat and moisture exchangers with heated humidifier during prolonged mechanical ventilation. Intensive Care Med. 1992; 18:97-100. PubMed
 
Kollef MH, Shapiro SD, Boyd V, Silver P, Von Harz B, Trovillion E, et al..  A randomized clinical trial comparing an extended-use hygroscopic condenser humidifier with heated-water humidification in mechanically ventilated patients. Chest. 1998; 113:759-67. PubMed
 
Kirton OC, DeHaven B, Morgan J, Morejon O, Civetta J.  A prospective, randomized comparison of an in-line heat moisture exchange filter and heated wire humidifiers: rates of ventilator-associated early-onset (community-acquired) or late-onset (hospital-acquired) pneumonia and incidence of endotracheal tube occlusion. Chest. 1997; 112:1055-9. PubMed
 
Boots RJ, Howe S, George N, Harris FM, Faoagali J.  Clinical utility of hygroscopic heat and moisture exchangers in intensive care patients. Crit Care Med. 1997; 25:1707-12. PubMed
 
Dreyfuss D, Djedaini K, Gros I, Mier L, Le Bourdelles G, Cohen Y, et al..  Mechanical ventilation with heated humidifiers or heat and moisture exchangers: effects on patient colonization and incidence of nosocomial pneumonia. Am J Respir Crit Care Med. 1995; 151:986-92. PubMed
 
Memish ZA, Oni GA, Djazmati W, Cunningham G, Mah MW.  A randomized clinical trial to compare the effects of a heat and moisture exchanger with a heated humidifying system on the occurrence rate of ventilator-associated pneumonia. Am J Infect Control. 2001; 29:301-5. PubMed
 
Davis K Jr, Evans SL, Campbell RS, Johannigman JA, Luchette FA, Porembka DT, et al..  Prolonged use of heat and moisture exchangers does not affect device efficiency or frequency rate of nosocomial pneumonia. Crit Care Med. 2000; 28:1412-8. PubMed
 
Thomachot L, Leone M, Razzouk K, Antonini F, Vialet R, Martin C.  Randomized clinical trial of extended use of a hydrophobic condenser humidifier: 1 vs. 7 days. Crit Care Med. 2002; 30:232-7. PubMed
 
Davis K Jr, Evans SL, Campbell RS, Johannigman JA, Luchette FA, Porembka DT, et al..  Prolonged use of heat and moisture exchangers does not affect device efficiency or frequency rate of nosocomial pneumonia. Crit Care Med. 2000; 28:1412-8. PubMed
 
Deppe SA, Kelly JW, Thoi LL, Chudy JH, Longfield RN, Ducey JP, et al..  Incidence of colonization, nosocomial pneumonia, and mortality in critically ill patients using a Trach Care closed-suction system versus an open-suction system: prospective, randomized study. Crit Care Med. 1990; 18:1389-93. PubMed
 
Combes P, Fauvage B, Oleyer C.  Nosocomial pneumonia in mechanically ventilated patients, a prospective randomised evaluation of the Stericath closed suctioning system. Intensive Care Med. 2000; 26:878-82. PubMed
 
Johnson KL, Kearney PA, Johnson SB, Niblett JB, MacMillan NL, McClain RE.  Closed versus open endotracheal suctioning: costs and physiologic consequences. Crit Care Med. 1994; 22:658-66. PubMed
 
Zeitoun SS, de Barros AL, Diccini S, Juliano Y.  [Incidence of ventilator-associated pneumonia in patients using open-suction systems and closed-suction systems: a prospective study—preliminary data]. Rev Lat Am Enfermagem. 2001; 9:46-52. PubMed
 
Kollef MH, Prentice D, Shapiro SD, Fraser VJ, Silver P, Trovillion E, et al..  Mechanical ventilation with or without daily changes of in-line suction catheters. Am J Respir Crit Care Med. 1997; 156:466-72. PubMed
 
Valles J, Artigas A, Rello J, Bonsoms N, Fontanals D, Blanch L, et al..  Continuous aspiration of subglottic secretions in preventing ventilator-associated pneumonia. Ann Intern Med. 1995; 122:179-86. PubMed
 
Metz C, Linde HJ, Gobel L, Gobel F, Taeger K.  Influence of intermittent subglottic lavage on subglottic colonisation and ventilator-associated pneumonia. Clin Intensive Care. 1998; 9:20-4.
 
Mahul P, Auboyer C, Jospe R, Ros A, Guerin C, el Khouri Z, et al..  Prevention of nosocomial pneumonia in intubated patients: respective role of mechanical subglottic secretions drainage and stress ulcer prophylaxis. Intensive Care Med. 1992; 18:20-5. PubMed
 
Kollef MH, Skubas NJ, Sundt TM.  A randomized clinical trial of continuous aspiration of subglottic secretions in cardiac surgery patients. Chest. 1999; 116:1339-46. PubMed
 
Smulders K, van der Hoeven H, Weers-Pothoff I, Vandenbroucke-Grauls C.  A randomized clinical trial of intermittent subglottic secretion drainage in patients receiving mechanical ventilation. Chest. 2002; 121:858-62. PubMed
 
Ntoumenopoulos G, Presneill JJ, McElholum M, Cade JF.  Chest physiotherapy for the prevention of ventilator-associated pneumonia. Intensive Care Med. 2002; 28:850-6. PubMed
 
Rodriguez JL, Steinberg SM, Luchetti FA, Gibbons KJ, Taheri PA, Flint LM.  Early tracheostomy for primary airway management in the surgical critical care setting. Surgery. 1990; 108:655-9. PubMed
 
Dunham CM, LaMonica C.  Prolonged tracheal intubation in the trauma patient. J Trauma. 1984; 24:120-4. PubMed
 
Sugerman HJ, Wolfe L, Pasquale MD, Rogers FB, O'Malley KF, Knudson M, et al..  Multicenter, randomized, prospective trial of early tracheostomy. J Trauma. 1997; 43:741-7. PubMed
 
Fink MP, Helsmoortel CM, Stein KL, Lee PC, Cohn SM.  The efficacy of an oscillating bed in the prevention of lower respiratory tract infection in critically ill victims of blunt trauma. A prospective study. Chest. 1990; 97:132-7. PubMed
 
deBoisblanc BP, Castro M, Everret B, Grender J, Walker CD, Summer WR.  Effect of air-supported, continuous, postural oscillation on the risk of early ICU pneumonia in nontraumatic critical illness. Chest. 1993; 103:1543-7. PubMed
 
Gentilello L, Thompson DA, Tonnesen AS, Hernandez D, Kapadia AS, Allen SJ, et al..  Effect of a rotating bed on the incidence of pulmonary complications in critically ill patients. Crit Care Med. 1988; 16:783-6. PubMed
 
Demarest GB, Schmidt-Nowara WW, Vance LW, Altman AR.  Use of the kinetic treatment table to prevent the pulmonary complications of multiple trauma. West J Med. 1989; 150:35-8. PubMed
 
Summer WR, Curry P, Haponik EF, Nelson S, Elston R.  Continuous mechanical turning of intensive care unit patients shortens length of stay in some diagnostic-related groups. J Crit Care. 1989; 4:45-53.
 
Whiteman K, Nachtmann L, Kramer D, Sereika S, Bierman M.  Effects of continuous lateral rotation therapy on pulmonary complications in liver transplant patients. Am J Crit Care. 1995; 4:133-9. PubMed
 
Traver GA, Tyler ML, Hudson LD, Sherrill DL, Quan SF.  Continuous oscillation: outcome in critically ill patients. J Crit Care. 1995; 10:97-103. PubMed
 
Kirschenbaum L, Azzi E, Sfeir T, Tietjen P, Astiz M.  Effect of continuous lateral rotational therapy on the prevalence of ventilator-associated pneumonia in patients requiring long-term ventilatory care. Crit Care Med. 2002; 30:1983-6. PubMed
 
Drakulovic MB, Torres A, Bauer TT, Nicolas JM, Nogue S, Ferrer M.  Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial. Lancet. 1999; 354:1851-8. PubMed
 
Beuret P, Carton MJ, Nourdine K, Kaaki M, Tramoni G, Ducreux JC.  Prone position as prevention of lung injury in comatose patients: a prospective, randomized, controlled study. Intensive Care Med. 2002; 28:564-9. PubMed
 
Ben-Menachem T, Fogel R, Patel RV, Touchette M, Zarowitz BJ, Hadzijahic N, et al..  Prophylaxis for stress-related gastric hemorrhage in the medical intensive care unit. A randomized, controlled, single-blind study. Ann Intern Med. 1994; 121:568-75. PubMed
 
Eddleston JM, Pearson RC, Holland J, Tooth JA, Vohra A, Doran BH.  Prospective endoscopic study of stress erosions and ulcers in critically ill adult patients treated with either sucralfate or placebo. Crit Care Med. 1994; 22:1949-54. PubMed
 
Vandenbroucke-Grauls CM, Vandenbroucke JP.  Effect of selective decontamination of the digestive tract on respiratory tract infections and mortality in the intensive care unit. Lancet. 1991; 338:859-62. PubMed
 
.  Meta-analysis of randomised controlled trials of selective decontamination of the digestive tract. Selective Decontamination of the Digestive Tract Trialists' Collaborative Group. BMJ. 1993; 307:525-32. PubMed
 
Heyland DK, Cook DJ, Jaeschke R, Griffith L, Lee HN, Guyatt GH.  Selective decontamination of the digestive tract. An overview. Chest. 1994; 105:1221-9. PubMed
 
Kollef MH.  The role of selective digestive tract decontamination on mortality and respiratory tract infections. A meta-analysis. Chest. 1994; 105:1101-8. PubMed
 
Hurley JC.  Prophylaxis with enteral antibiotics in ventilated patients: selective decontamination or selective cross-infection? Antimicrob Agents Chemother. 1995; 39:941-7. PubMed
 
D'Amico R, Pifferi S, Leonetti C, Torri V, Tinazzi A, Liberati A.  Effectiveness of antibiotic prophylaxis in critically ill adult patients: systematic review of randomised controlled trials. BMJ. 1998; 316:1275-85. PubMed
 
Nathens AB, Marshall JC.  Selective decontamination of the digestive tract in surgical patients: a systematic review of the evidence. Arch Surg. 1999; 134:170-6. PubMed
 
Tonnesen EK, Toft P.  [Antibiotic prophylaxis in adult critically ill patients in intensive care units]. Ugeskr Laeger. 1999; 161:15-7. PubMed
 
van Nieuwenhoven CA, Buskens E, van Tiel FH, Bonten MJ.  Relationship between methodological trial quality and the effects of selective digestive decontamination on pneumonia and mortality in critically ill patients. JAMA. 2001; 286:335-40. PubMed
 
Liberati A, D'Amico R, Pifferi, Torri V, Brazzi L.  Antibiotic prophylaxis to reduce respiratory tract infections and mortality in adults receiving intensive care. Cochrane Database Syst Rev. 2004; CD000022. PubMed
 
Mulrow CD.  The medical review article: state of the science. Ann Intern Med. 1987; 106:485-8. PubMed
 
Cook DJ, Greengold NL, Ellrodt AG, Weingarten SR.  The relation between systematic reviews and practice guidelines. Ann Intern Med. 1997; 127:210-6. PubMed
 
Woolf SH, Battista RN, Anderson GM, Logan AG, Wang E.  Assessing the clinical effectiveness of preventive maneuvers: analytic principles and systematic methods in reviewing evidence and developing clinical practice recommendations. A report by the Canadian Task Force on the Periodic Health Examination. J Clin Epidemiol. 1990; 43:891-905. PubMed
 
Black N, Murphy M, Lamping D, McKee M, Sanderson C, Askham J, et al..  Consensus development methods: a review of best practice in creating clinical guidelines. J Health Serv Res Policy. 1999; 4:236-48. PubMed
 
.  Diagnosis and treatment of idiopathic thrombocytopenic purpura: recommendations of the American Society of Hematology. The American Society of Hematology ITP Practice Guideline Panel. Ann Intern Med. 1997; 126:319-26. PubMed
 
Cook DJ, Mulrow CD, Haynes RB.  Systematic reviews: synthesis of best evidence for clinical decisions. Ann Intern Med. 1997; 126:376-80. PubMed
 
Grilli R, Magrini N, Penna A, Mura G, Liberati A.  Practice guidelines developed by specialty societies: the need for a critical appraisal. Lancet. 2000; 355:103-6. PubMed
 
Shaneyfelt TM, Mayo-Smith MF, Rothwangl J.  Are guidelines following guidelines? The methodological quality of clinical practice guidelines in the peer-reviewed medical literature. JAMA. 1999; 281:1900-5. PubMed
 
Heyland DK, Gafni A, Kernerman P, Keenan S, Chalfin D.  How to use the results of an economic evaluation. Crit Care Med. 1999; 27:1195-202. PubMed
 
Cluzeau FA, Littlejohns P, Grimshaw JM, Feder G, Moran SE.  Development and application of a generic methodology to assess the quality of clinical guidelines. Int J Qual Health Care. 1999; 11:21-8. PubMed
 
Grimshaw JM, Shirran L, Thomas R, Mowatt G, Fraser C, Bero L, et al..  Changing provider behavior: an overview of systematic reviews of interventions. Med Care. 2001; 39:II2-45. PubMed
 
Cook DJ, Meade MO, Hand LE, McMullin JP.  Toward understanding evidence uptake: semirecumbency for pneumonia prevention. Crit Care Med. 2002; 30:1472-7. PubMed
 
McMullin JP, Cook DJ, Meade MO, Weaver BR, Letelier LM, Kahmamoui K, et al..  Clinical estimation of trunk position among mechanically ventilated patients. Intensive Care Med. 2002; 28:304-9. PubMed
 
Shiffman RN, Shekelle P, Overhage JM, Slutsky J, Grimshaw J, Deshpande AM.  Standardized reporting of clinical practice guidelines: a proposal from the Conference on Guideline Standardization. Ann Intern Med. 2003; 139:493-8. PubMed
 
Graham ID, Beardall S, Carter AO, Glennie J, Hebert PC, Tetroe JM, et al..  What is the quality of drug therapy clinical practice guidelines in Canada? CMAJ. 2001; 165:157-63. PubMed
 
Hayward RS, Guyatt GH, Moore KA, McKibbon KA, Carter AO.  Canadian physicians' attitudes about and preferences regarding clinical practice guidelines. CMAJ. 1997; 156:1715-23. PubMed
 
Tunis SR, Hayward RS, Wilson MC, Rubin HR, Bass EB, Johnston M, et al..  Internists' attitudes about clinical practice guidelines. Ann Intern Med. 1994; 120:956-63. PubMed
 
Shorr AF, O'Malley PG.  Continuous subglottic suctioning for the prevention of ventilator-associated pneumonia: potential economic implications. Chest. 2001; 119:228-35. PubMed
 
Feder G, Eccles M, Grol R, Griffiths C, Grimshaw J.  Clinical guidelines: using clinical guidelines. BMJ. 1999; 318:728-30. PubMed
 
Grol R, Grimshaw J.  Evidence-based implementation of evidence-based medicine. Jt Comm J Qual Improv. 1999; 25:503-13. PubMed
 

Figures

Tables

Table Jump PlaceholderTable 1.  Semi-quantitative Scores of Strategies To Prevent Ventilator-Associated Pneumonia
Table Jump PlaceholderTable 2.  Agreement Scores of Panel Members with the Final Status of Each Item

References

Girou E, Stephan F, Novara A, Safar M, Fagon JY.  Risk factors and outcome of nosocomial infections: results of a matched case-control study of ICU patients. Am J Respir Crit Care Med. 1998; 157:1151-8. PubMed
 
Bueno-Cavanillas A, Delgado-Rodriguez M, Lopez-Luque A, Schaffino-Cano S, Galvez-Vargas R.  Influence of nosocomial infection on mortality rate in an intensive care unit. Crit Care Med. 1994; 22:55-60. PubMed
 
de Clercq H, De Decker G, Alexander JP, Huyghens L.  Cost evaluation of infections in intensive care. Acta Anaesthesiol Belg. 1983; 34:179-89. PubMed
 
Vincent JL, Bihari DJ, Suter PM, Bruining HA, White J, Nicolas-Chanoin MH, et al..  The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA. 1995; 274:639-44. PubMed
CrossRef
 
Potgieter PD, Linton DM, Oliver S, Forder AA.  Nosocomial infections in a respiratory intensive care unit. Crit Care Med. 1987; 15:495-8. PubMed
 
Kerver AJ, Rommes JH, Mevissen-Verhage EA, Hulstaert PF, Vos A, Verhoef J, et al..  Colonization and infection in surgical intensive care patients—a prospective study. Intensive Care Med. 1987; 13:347-51. PubMed
 
Rello J, Quintana E, Ausina V, Castella J, Luquin M, Net A, et al..  Incidence, etiology, and outcome of nosocomial pneumonia in mechanically ventilated patients. Chest. 1991; 100:439-44. PubMed
 
Celis R, Torres A, Gatell JM, Almela M, Rodriguez-Roisin R, Agusti–-Vidal A.  Nosocomial pneumonia. A multivariate analysis of risk and prognosis. Chest. 1988; 93:318-24. PubMed
 
Craven DE, Kunches LM, Lichtenberg DA, Kollisch NR, Barry MA, Heeren TC, et al..  Nosocomial infection and fatality in medical and surgical intensive care unit patients. Arch Intern Med. 1988; 148:1161-8. PubMed
 
Jimenez P, Torres A, Rodriguez-Roisin R, de la Bellacasa JP, Aznar R, Gatell JM, et al..  Incidence and etiology of pneumonia acquired during mechanical ventilation. Crit Care Med. 1989; 17:882-5. PubMed
 
Fagon JY, Chastre J, Vuagnat A, Trouillet JL, Novara A, Gibert C.  Nosocomial pneumonia and mortality among patients in intensive care units. JAMA. 1996; 275:866-9. PubMed
 
Cook DJ, Kollef MH.  Risk factors for ICU-acquired pneumonia. JAMA. 1998; 279:1605-6. PubMed
 
Cook DJ, Walter SD, Cook RJ, Griffith LE, Guyatt GH, Leasa D, et al..  Incidence of and risk factors for ventilator-associated pneumonia in critically ill patients. Ann Intern Med. 1998; 129:433-40. PubMed
 
Heyland DK, Cook DJ, Griffith L, Keenan SP, Brun-Buisson C.  The attributable morbidity and mortality of ventilator-associated pneumonia in the critically ill patient. The Canadian Critical Trials Group. Am J Respir Crit Care Med. 1999; 159:1249-56. PubMed
 
Fagon JY, Chastre J, Hance AJ, Montravers P, Novara A, Gibert C.  Nosocomial pneumonia in ventilated patients: a cohort study evaluating attributable mortality and hospital stay. Am J Med. 1993; 94:281-8. PubMed
 
Baker AM, Meredith JW, Haponik EF.  Pneumonia in intubated trauma patients. Microbiology and outcomes. Am J Respir Crit Care Med. 1996; 153:343-9. PubMed
 
Cunnion KM, Weber DJ, Broadhead WE, Hanson LC, Pieper CF, Rutala WA.  Risk factors for nosocomial pneumonia: comparing adult critical-care populations. Am J Respir Crit Care Med. 1996; 153:158-62. PubMed
 
Craig CP, Connelly S.  Effect of intensive care unit nosocomial pneumonia on duration of stay and mortality. Am J Infect Control. 1984; 12:233-8. PubMed
 
Kappstein I, Schulgen G, Beyer U, Geiger K, Schumacher M, Daschner FD.  Prolongation of hospital stay and extra costs due to ventilator-associated pneumonia in an intensive care unit. Eur J Clin Microbiol Infect Dis. 1992; 11:504-8. PubMed
 
Papazian L, Bregeon F, Thirion X, Gregoire R, Saux P, Denis JP, et al..  Effect of ventilator-associated pneumonia on mortality and morbidity. Am J Respir Crit Care Med. 1996; 154:91-7. PubMed
 
Cook D, Ricard JD, Reeve B, Randall J, Wigg M, Brochard L, et al..  Ventilator circuit and secretion management strategies: a Franco-Canadian survey. Crit Care Med. 2000; 28:3547-54. PubMed
 
Tablan OC, Anderson LJ, Arden NH, Breiman RF, Butler JC, McNeil MM.  Guideline for prevention of nosocomial pneumonia. The Hospital Infection Control Practices Advisory Committee, Centers for Disease Control and Prevention. Am J Infect Control. 1994; 22:247-92. PubMed
 
.  Hospital-acquired pneumonia in adults: diagnosis, assessment of severity, initial antimicrobial therapy, and preventive strategies. A consensus statement, American Thoracic Society, November 1995. Am J Respir Crit Care Med. 1996; 153:1711-25. PubMed
 
MacIntyre NR, Cook DJ, Ely EW Jr, Epstein SK, Fink JB, Heffner JE, et al..  Evidence-based guidelines for weaning and discontinuing ventilatory support: a collective task force facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest. 2001; 120:375S-95S. PubMed
 
Heyland DK, Dhaliwal R, Drover JW, Gramlich L, Dodek P.  Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr. 2003; 27:355-73. PubMed
 
Guyatt GH, Sackett DL, Cook DJ.  Users' guides to the medical literature. II. How to use an article about therapy or prevention. B. What were the results and will they help me in caring for my patients? Evidence-Based Medicine Working Group. JAMA. 1994; 271:59-63. PubMed
 
Guyatt GH, Sackett DL, Cook DJ.  Users' guides to the medical literature. II. How to use an article about therapy or prevention. A. Are the results of the study valid? Evidence-Based Medicine Working Group. JAMA. 1993; 270:2598-601. PubMed
 
Oxman AD, Cook DJ, Guyatt GH.  Users' guides to the medical literature. VI. How to use an overview. Evidence-Based Medicine Working Group. JAMA. 1994; 272:1367-71. PubMed
 
Shekelle PG, Woolf SH, Eccles M, Grimshaw J.  Clinical guidelines: developing guidelines. BMJ. 1999; 318:593-6. PubMed
 
Choudhry NK, Stelfox HT, Detsky AS.  Relationships between authors of clinical practice guidelines and the pharmaceutical industry. JAMA. 2002; 287:612-7. PubMed
 
Hayward RS, Wilson MC, Tunis SR, Bass EB, Rubin HR, Haynes RB.  More informative abstracts of articles describing clinical practice guidelines. Ann Intern Med. 1993; 118:731-7. PubMed
 
Shekelle P, Eccles MP, Grimshaw JM, Woolf SH.  When should clinical guidelines be updated? BMJ. 2001; 323:155-7. PubMed
 
Holzapfel L, Chevret S, Madinier G, Ohen F, Demingeon G, Coupry A, et al..  Influence of long-term oro- or nasotracheal intubation on nosocomial maxillary sinusitis and pneumonia: results of a prospective, randomized, clinical trial. Crit Care Med. 1993; 21:1132-8. PubMed
 
Salord F, Gaussorgues P, Marti-Flich J, Sirodot M, Allimant C, Lyonnet D, et al..  Nosocomial maxillary sinusitis during mechanical ventilation: a prospective comparison of orotracheal versus the nasotracheal route for intubation. Intensive Care Med. 1990; 16:390-3. PubMed
 
Michelson A, Kamp HD, Schuster B.  [Sinusitis in long-term intubated, intensive care patients: nasal versus oral intubation]. Anaesthesist. 1991; 40:100-4. PubMed
 
Bach A, Boehrer H, Schmidt H, Geiss HK.  Nosocomial sinusitis in ventilated patients. Nasotracheal versus orotracheal intubation. Anaesthesia. 1992; 47:335-9. PubMed
 
Rouby JJ, Laurent P, Gosnach M, Cambau E, Lamas G, Zouaoui A, et al..  Risk factors and clinical relevance of nosocomial maxillary sinusitis in the critically ill. Am J Respir Crit Care Med. 1994; 150:776-83. PubMed
 
Holzapfel L, Chastang C, Demingeon G, Bohe J, Piralla B, Coupry A.  A randomized study assessing the systematic search for maxillary sinusitis in nasotracheally mechanically ventilated patients. Influence of nosocomial maxillary sinusitis on the occurrence of ventilator-associated pneumonia. Am J Respir Crit Care Med. 1999; 159:695-701. PubMed
 
Kollef MH, Shapiro SD, Fraser VJ, Silver P, Murphy DM, Trovillion E, et al..  Mechanical ventilation with or without 7-day circuit changes. A randomized controlled trial. Ann Intern Med. 1995; 123:168-74. PubMed
 
Dreyfuss D, Djedaini K, Weber P, Brun P, Lanore JJ, Rahmani J, et al..  Prospective study of nosocomial pneumonia and of patient and circuit colonization during mechanical ventilation with circuit changes every 48 hours versus no change. Am Rev Respir Dis. 1991; 143:738-43. PubMed
 
Long MN, Wickstrom G, Grimes A, Benton CF, Belcher B, Stamm AM.  Prospective, randomized study of ventilator-associated pneumonia in patients with one versus three ventilator circuit changes per week. Infect Control Hosp Epidemiol. 1996; 17:14-9. PubMed
 
Martin C, Perrin G, Gevaudan MJ, Saux P, Gouin F.  Heat and moisture exchangers and vaporizing humidifiers in the intensive care unit. Chest. 1990; 97:144-9. PubMed
 
Roustan JP, Kienlen J, Aubas P, Aubas S, du Cailar J.  Comparison of hydrophobic heat and moisture exchangers with heated humidifier during prolonged mechanical ventilation. Intensive Care Med. 1992; 18:97-100. PubMed
 
Kollef MH, Shapiro SD, Boyd V, Silver P, Von Harz B, Trovillion E, et al..  A randomized clinical trial comparing an extended-use hygroscopic condenser humidifier with heated-water humidification in mechanically ventilated patients. Chest. 1998; 113:759-67. PubMed
 
Kirton OC, DeHaven B, Morgan J, Morejon O, Civetta J.  A prospective, randomized comparison of an in-line heat moisture exchange filter and heated wire humidifiers: rates of ventilator-associated early-onset (community-acquired) or late-onset (hospital-acquired) pneumonia and incidence of endotracheal tube occlusion. Chest. 1997; 112:1055-9. PubMed
 
Boots RJ, Howe S, George N, Harris FM, Faoagali J.  Clinical utility of hygroscopic heat and moisture exchangers in intensive care patients. Crit Care Med. 1997; 25:1707-12. PubMed
 
Dreyfuss D, Djedaini K, Gros I, Mier L, Le Bourdelles G, Cohen Y, et al..  Mechanical ventilation with heated humidifiers or heat and moisture exchangers: effects on patient colonization and incidence of nosocomial pneumonia. Am J Respir Crit Care Med. 1995; 151:986-92. PubMed
 
Memish ZA, Oni GA, Djazmati W, Cunningham G, Mah MW.  A randomized clinical trial to compare the effects of a heat and moisture exchanger with a heated humidifying system on the occurrence rate of ventilator-associated pneumonia. Am J Infect Control. 2001; 29:301-5. PubMed
 
Davis K Jr, Evans SL, Campbell RS, Johannigman JA, Luchette FA, Porembka DT, et al..  Prolonged use of heat and moisture exchangers does not affect device efficiency or frequency rate of nosocomial pneumonia. Crit Care Med. 2000; 28:1412-8. PubMed
 
Thomachot L, Leone M, Razzouk K, Antonini F, Vialet R, Martin C.  Randomized clinical trial of extended use of a hydrophobic condenser humidifier: 1 vs. 7 days. Crit Care Med. 2002; 30:232-7. PubMed
 
Davis K Jr, Evans SL, Campbell RS, Johannigman JA, Luchette FA, Porembka DT, et al..  Prolonged use of heat and moisture exchangers does not affect device efficiency or frequency rate of nosocomial pneumonia. Crit Care Med. 2000; 28:1412-8. PubMed
 
Deppe SA, Kelly JW, Thoi LL, Chudy JH, Longfield RN, Ducey JP, et al..  Incidence of colonization, nosocomial pneumonia, and mortality in critically ill patients using a Trach Care closed-suction system versus an open-suction system: prospective, randomized study. Crit Care Med. 1990; 18:1389-93. PubMed
 
Combes P, Fauvage B, Oleyer C.  Nosocomial pneumonia in mechanically ventilated patients, a prospective randomised evaluation of the Stericath closed suctioning system. Intensive Care Med. 2000; 26:878-82. PubMed
 
Johnson KL, Kearney PA, Johnson SB, Niblett JB, MacMillan NL, McClain RE.  Closed versus open endotracheal suctioning: costs and physiologic consequences. Crit Care Med. 1994; 22:658-66. PubMed
 
Zeitoun SS, de Barros AL, Diccini S, Juliano Y.  [Incidence of ventilator-associated pneumonia in patients using open-suction systems and closed-suction systems: a prospective study—preliminary data]. Rev Lat Am Enfermagem. 2001; 9:46-52. PubMed
 
Kollef MH, Prentice D, Shapiro SD, Fraser VJ, Silver P, Trovillion E, et al..  Mechanical ventilation with or without daily changes of in-line suction catheters. Am J Respir Crit Care Med. 1997; 156:466-72. PubMed
 
Valles J, Artigas A, Rello J, Bonsoms N, Fontanals D, Blanch L, et al..  Continuous aspiration of subglottic secretions in preventing ventilator-associated pneumonia. Ann Intern Med. 1995; 122:179-86. PubMed
 
Metz C, Linde HJ, Gobel L, Gobel F, Taeger K.  Influence of intermittent subglottic lavage on subglottic colonisation and ventilator-associated pneumonia. Clin Intensive Care. 1998; 9:20-4.
 
Mahul P, Auboyer C, Jospe R, Ros A, Guerin C, el Khouri Z, et al..  Prevention of nosocomial pneumonia in intubated patients: respective role of mechanical subglottic secretions drainage and stress ulcer prophylaxis. Intensive Care Med. 1992; 18:20-5. PubMed
 
Kollef MH, Skubas NJ, Sundt TM.  A randomized clinical trial of continuous aspiration of subglottic secretions in cardiac surgery patients. Chest. 1999; 116:1339-46. PubMed
 
Smulders K, van der Hoeven H, Weers-Pothoff I, Vandenbroucke-Grauls C.  A randomized clinical trial of intermittent subglottic secretion drainage in patients receiving mechanical ventilation. Chest. 2002; 121:858-62. PubMed
 
Ntoumenopoulos G, Presneill JJ, McElholum M, Cade JF.  Chest physiotherapy for the prevention of ventilator-associated pneumonia. Intensive Care Med. 2002; 28:850-6. PubMed
 
Rodriguez JL, Steinberg SM, Luchetti FA, Gibbons KJ, Taheri PA, Flint LM.  Early tracheostomy for primary airway management in the surgical critical care setting. Surgery. 1990; 108:655-9. PubMed
 
Dunham CM, LaMonica C.  Prolonged tracheal intubation in the trauma patient. J Trauma. 1984; 24:120-4. PubMed
 
Sugerman HJ, Wolfe L, Pasquale MD, Rogers FB, O'Malley KF, Knudson M, et al..  Multicenter, randomized, prospective trial of early tracheostomy. J Trauma. 1997; 43:741-7. PubMed
 
Fink MP, Helsmoortel CM, Stein KL, Lee PC, Cohn SM.  The efficacy of an oscillating bed in the prevention of lower respiratory tract infection in critically ill victims of blunt trauma. A prospective study. Chest. 1990; 97:132-7. PubMed
 
deBoisblanc BP, Castro M, Everret B, Grender J, Walker CD, Summer WR.  Effect of air-supported, continuous, postural oscillation on the risk of early ICU pneumonia in nontraumatic critical illness. Chest. 1993; 103:1543-7. PubMed
 
Gentilello L, Thompson DA, Tonnesen AS, Hernandez D, Kapadia AS, Allen SJ, et al..  Effect of a rotating bed on the incidence of pulmonary complications in critically ill patients. Crit Care Med. 1988; 16:783-6. PubMed
 
Demarest GB, Schmidt-Nowara WW, Vance LW, Altman AR.  Use of the kinetic treatment table to prevent the pulmonary complications of multiple trauma. West J Med. 1989; 150:35-8. PubMed
 
Summer WR, Curry P, Haponik EF, Nelson S, Elston R.  Continuous mechanical turning of intensive care unit patients shortens length of stay in some diagnostic-related groups. J Crit Care. 1989; 4:45-53.
 
Whiteman K, Nachtmann L, Kramer D, Sereika S, Bierman M.  Effects of continuous lateral rotation therapy on pulmonary complications in liver transplant patients. Am J Crit Care. 1995; 4:133-9. PubMed
 
Traver GA, Tyler ML, Hudson LD, Sherrill DL, Quan SF.  Continuous oscillation: outcome in critically ill patients. J Crit Care. 1995; 10:97-103. PubMed
 
Kirschenbaum L, Azzi E, Sfeir T, Tietjen P, Astiz M.  Effect of continuous lateral rotational therapy on the prevalence of ventilator-associated pneumonia in patients requiring long-term ventilatory care. Crit Care Med. 2002; 30:1983-6. PubMed
 
Drakulovic MB, Torres A, Bauer TT, Nicolas JM, Nogue S, Ferrer M.  Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial. Lancet. 1999; 354:1851-8. PubMed
 
Beuret P, Carton MJ, Nourdine K, Kaaki M, Tramoni G, Ducreux JC.  Prone position as prevention of lung injury in comatose patients: a prospective, randomized, controlled study. Intensive Care Med. 2002; 28:564-9. PubMed
 
Ben-Menachem T, Fogel R, Patel RV, Touchette M, Zarowitz BJ, Hadzijahic N, et al..  Prophylaxis for stress-related gastric hemorrhage in the medical intensive care unit. A randomized, controlled, single-blind study. Ann Intern Med. 1994; 121:568-75. PubMed
 
Eddleston JM, Pearson RC, Holland J, Tooth JA, Vohra A, Doran BH.  Prospective endoscopic study of stress erosions and ulcers in critically ill adult patients treated with either sucralfate or placebo. Crit Care Med. 1994; 22:1949-54. PubMed
 
Vandenbroucke-Grauls CM, Vandenbroucke JP.  Effect of selective decontamination of the digestive tract on respiratory tract infections and mortality in the intensive care unit. Lancet. 1991; 338:859-62. PubMed
 
.  Meta-analysis of randomised controlled trials of selective decontamination of the digestive tract. Selective Decontamination of the Digestive Tract Trialists' Collaborative Group. BMJ. 1993; 307:525-32. PubMed
 
Heyland DK, Cook DJ, Jaeschke R, Griffith L, Lee HN, Guyatt GH.  Selective decontamination of the digestive tract. An overview. Chest. 1994; 105:1221-9. PubMed
 
Kollef MH.  The role of selective digestive tract decontamination on mortality and respiratory tract infections. A meta-analysis. Chest. 1994; 105:1101-8. PubMed
 
Hurley JC.  Prophylaxis with enteral antibiotics in ventilated patients: selective decontamination or selective cross-infection? Antimicrob Agents Chemother. 1995; 39:941-7. PubMed
 
D'Amico R, Pifferi S, Leonetti C, Torri V, Tinazzi A, Liberati A.  Effectiveness of antibiotic prophylaxis in critically ill adult patients: systematic review of randomised controlled trials. BMJ. 1998; 316:1275-85. PubMed
 
Nathens AB, Marshall JC.  Selective decontamination of the digestive tract in surgical patients: a systematic review of the evidence. Arch Surg. 1999; 134:170-6. PubMed
 
Tonnesen EK, Toft P.  [Antibiotic prophylaxis in adult critically ill patients in intensive care units]. Ugeskr Laeger. 1999; 161:15-7. PubMed
 
van Nieuwenhoven CA, Buskens E, van Tiel FH, Bonten MJ.  Relationship between methodological trial quality and the effects of selective digestive decontamination on pneumonia and mortality in critically ill patients. JAMA. 2001; 286:335-40. PubMed
 
Liberati A, D'Amico R, Pifferi, Torri V, Brazzi L.  Antibiotic prophylaxis to reduce respiratory tract infections and mortality in adults receiving intensive care. Cochrane Database Syst Rev. 2004; CD000022. PubMed
 
Mulrow CD.  The medical review article: state of the science. Ann Intern Med. 1987; 106:485-8. PubMed
 
Cook DJ, Greengold NL, Ellrodt AG, Weingarten SR.  The relation between systematic reviews and practice guidelines. Ann Intern Med. 1997; 127:210-6. PubMed
 
Woolf SH, Battista RN, Anderson GM, Logan AG, Wang E.  Assessing the clinical effectiveness of preventive maneuvers: analytic principles and systematic methods in reviewing evidence and developing clinical practice recommendations. A report by the Canadian Task Force on the Periodic Health Examination. J Clin Epidemiol. 1990; 43:891-905. PubMed
 
Black N, Murphy M, Lamping D, McKee M, Sanderson C, Askham J, et al..  Consensus development methods: a review of best practice in creating clinical guidelines. J Health Serv Res Policy. 1999; 4:236-48. PubMed
 
.  Diagnosis and treatment of idiopathic thrombocytopenic purpura: recommendations of the American Society of Hematology. The American Society of Hematology ITP Practice Guideline Panel. Ann Intern Med. 1997; 126:319-26. PubMed
 
Cook DJ, Mulrow CD, Haynes RB.  Systematic reviews: synthesis of best evidence for clinical decisions. Ann Intern Med. 1997; 126:376-80. PubMed
 
Grilli R, Magrini N, Penna A, Mura G, Liberati A.  Practice guidelines developed by specialty societies: the need for a critical appraisal. Lancet. 2000; 355:103-6. PubMed
 
Shaneyfelt TM, Mayo-Smith MF, Rothwangl J.  Are guidelines following guidelines? The methodological quality of clinical practice guidelines in the peer-reviewed medical literature. JAMA. 1999; 281:1900-5. PubMed
 
Heyland DK, Gafni A, Kernerman P, Keenan S, Chalfin D.  How to use the results of an economic evaluation. Crit Care Med. 1999; 27:1195-202. PubMed
 
Cluzeau FA, Littlejohns P, Grimshaw JM, Feder G, Moran SE.  Development and application of a generic methodology to assess the quality of clinical guidelines. Int J Qual Health Care. 1999; 11:21-8. PubMed
 
Grimshaw JM, Shirran L, Thomas R, Mowatt G, Fraser C, Bero L, et al..  Changing provider behavior: an overview of systematic reviews of interventions. Med Care. 2001; 39:II2-45. PubMed
 
Cook DJ, Meade MO, Hand LE, McMullin JP.  Toward understanding evidence uptake: semirecumbency for pneumonia prevention. Crit Care Med. 2002; 30:1472-7. PubMed
 
McMullin JP, Cook DJ, Meade MO, Weaver BR, Letelier LM, Kahmamoui K, et al..  Clinical estimation of trunk position among mechanically ventilated patients. Intensive Care Med. 2002; 28:304-9. PubMed
 
Shiffman RN, Shekelle P, Overhage JM, Slutsky J, Grimshaw J, Deshpande AM.  Standardized reporting of clinical practice guidelines: a proposal from the Conference on Guideline Standardization. Ann Intern Med. 2003; 139:493-8. PubMed
 
Graham ID, Beardall S, Carter AO, Glennie J, Hebert PC, Tetroe JM, et al..  What is the quality of drug therapy clinical practice guidelines in Canada? CMAJ. 2001; 165:157-63. PubMed
 
Hayward RS, Guyatt GH, Moore KA, McKibbon KA, Carter AO.  Canadian physicians' attitudes about and preferences regarding clinical practice guidelines. CMAJ. 1997; 156:1715-23. PubMed
 
Tunis SR, Hayward RS, Wilson MC, Rubin HR, Bass EB, Johnston M, et al..  Internists' attitudes about clinical practice guidelines. Ann Intern Med. 1994; 120:956-63. PubMed
 
Shorr AF, O'Malley PG.  Continuous subglottic suctioning for the prevention of ventilator-associated pneumonia: potential economic implications. Chest. 2001; 119:228-35. PubMed
 
Feder G, Eccles M, Grol R, Griffiths C, Grimshaw J.  Clinical guidelines: using clinical guidelines. BMJ. 1999; 318:728-30. PubMed
 
Grol R, Grimshaw J.  Evidence-based implementation of evidence-based medicine. Jt Comm J Qual Improv. 1999; 25:503-13. PubMed
 

Letters

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Comments

Submit a Comment
Gut decontamination to prevent VAP
Posted on September 26, 2004
James R. Johnson
VA Medical Center, Minneapolis, MN
Conflict of Interest: None Declared

To the editor,

In their guidelines for prevention of ventilator-associated pneumonia, Dodek et al. make no recommendation regarding selective digestive tract decontamination (SDD), despite the solid evidence of its efficacy, because of persisting uncertainty regarding costs and the possible risk of selecting for resistant organisms (1). Their assessment was based on a review of studies published through April 2003. However, in September 2003, de Jonge et al. reported a large trial of SDD that showed significant reductions not only in infections (including ventilator- associated pneumonia) but also in mortality and, most strikingly, the prevalence of antimicrobial-resistant bacteria (2). It would be interesting to know the guidelines panel's opinion regarding whether this added evidence is sufficient to support a recommendation for SDD as a desirable intervention, even if only for selected patients, as others have argued (3), or if further study, especially in a setting with a higher background prevalence of methicillin-resistant staphylococci and/or vancomycin-resistant enterococci, is still needed.

1. Dodek P, Keenan S, Cook D, et al.; Canadian Critical Care Trials Group; Canadian Critical Care Society. Evidence-based clinical practice guideline for the prevention of ventilator-associated pneumonia. Ann Intern Med. 2004 ;141:305-13.

2. de Jonge E, Schultz MJ, Spanjaard L, et al. Effects of selective decontamination of digestive tract on mortality and acquisition of resistant bacteria in intensive care: a randomised controlled trial. Lancet. 2003;362:1011-6.

3. Aarts MA, Marshall JC. In defense of evidence: the continuing saga of selective decontamination of the digestive tract. Am J Respir Crit Care Med. 2002;166:1014-5.

Conflict of Interest:

None declared

THE EMPEROR'S NEW CLOTHES
Posted on December 6, 2004
Hendrik K van Saene
University of Liverpool
Conflict of Interest: None Declared

TO THE EDITOR: Dodek and colleagues' evidence-based clinical practice guideline for the prevention of ventilator-associated pneumonia1 illustrates that the original Canadian promoters of examination of evidence from clinical research do not escape the fate of becoming experts after little more than a decade of evidence-based medicine [EBM]2. Selective decontamination of the digestive tract [SDD] "“ albeit the only ICU intervention with a grade A recommendation from the Agency for Health Research and Quality of the US Department for Health and Human Services3 "“ was not granted a recommendation by a panel of experts selected by the Canadian Critical Care Trials group and the Canadian Critical Care Society due to their low scoring for safety and costs of SDD.

Remarkably, the panel of 11 experts, decided to review only systematic reviews of randomised controlled trials [RCTs] of SDD, whereas they reviewed RCTs for the other interventions. However, of the meta- analyses three4-6 incorporate non-RCTs, three conducted by the Cochrane7-9 were updates of the same meta-analysis of only RCTs, and one was a translation of the first update of Cochrane systematic review from English into Swedish10. Therefore, the panel only assessed four instead of 10 meta -analyses. We would like to clarify our disagreement with the panel's conclusion using the latest Cochrane Library meta-analysis, as its authors applied a well recognised methodology9.

Firstly, a poor score of 1 for the safety of SDD implies that the existent data supports a potential link between antimicrobial resistance and SDD. An analysis of resistance requires the distinction of the number of patients with infections due to resistant aerobic Gram-negative bacilli [AGNB] from patients with infections due to methicillin-resistant Staphylococcus aureus [MRSA] and vancomycin-resistant enterococci [VRE]. Additionally, low level evidence studies including before-after studies are distinguished from RCTs and long-term resistance studies providing high level of evidence. Again, the meta-analyses evaluated by the panel do not provide data for a link between SDD and antimicrobial resistance. The Cochrane Library meta-analysis "“ the only one that includes the first ever RCT on antimicrobial resistance11 "“ reports that SDD does not lead to resistance amongst AGNB but, even better, the addition of enteral polymyxin/tobramycin to the parenteral antimicrobials reduces resistance compared with the parenteral antibiotics only. This is in line with a previous RCT demonstrating that enteral antimicrobials control extended spectrum beta-lactamase producing Klebsiella12. SDD implemented in two American ICUs with endemic VRE did not lead to an increased number of VRE infections13,14. SDD is not designed to control MRSA. There are seven RCTs conducted in ICUs where MRSA was endemic at the time of the trial, so they report a trend towards higher MRSA infection rates in patients receiving SDD15-21. The addition of enteral vancomycin to SDD is required to control MRSA in ICUs with endemic MRSA22,23. VRE did not emerge in any of the RCTs using enteral vancomycin22-29. Antimicrobial resistance, being a long term issue, has been evaluated in eight SDD studies monitoring antimicrobial resistance between two and seven years, and bacterial resistance associated with SDD has not been a clinical problem30-37.

Secondly, SDD was also given the lower score of 1 for the outcome measure of costs, implying a higher cost to implement SDD on ICU. This is despite the statement "˜Cost-effectiveness of SDD is of unknown magnitude' in the text1. This panel's opinion contrasts the conclusion of the recent report of the Agency for Health Research and Quality of the US Department for Health and Human Services that SDD is cheap and easy to implement3. Fair enough, the cost-effectiveness of SDD is not yet properly assessed, but, costs can hardly be a major concern for a manoeuvre of $6 a day that reduces pneumonia by 65% and mortality by 22% without antimicrobial resistance emerging in unselected ICU patients. This is even more surprising when physiotherapy with its attendant staff costs is considered a low cost strategy.

The conclusion of the Canadian panel that no recommendation could be made about SDD for the prevention of pneumonia during ventilation is not based on evidence from RCTs but on the opinion of the panel, i.e., the lowest level of evidence. Finally, can we remind the panel members and their followers that on average for every five patients who do not receive SDD one extra patient develops a pneumonia and that there is one extra death every 21 patients in units who do not administer SDD. EBM-guidelines should be developed by a critical analysis of the available scientific data with clearly described methodology. The Canadian guidelines do not meet these requirements. Despite the claims of a rigorous evidence base, the members of the panel are not dressed in the robes of EBM but as in the fairy tale "˜The Emperor's New Clothes, they are bare38.

Miguel Angel de la Cal Dept Critical Care Medicine, Getafe Hospital, Madrid, Spain

Luciano Silvestri Dept Anaesthesia and Critical Care, Gorizia Hospital, Italy

Paul Baines Paediatric Intensive Care Unit, Royal Liverpool Children's Hospital, UK

Hendrik van Saene Dept Medical Microbiology, University of Liverpool, UK

References

1. Dodek P, Keenan S, Cook D, Heyland D, Jacka M, Hand L et al. Evidence-based clinical practice guideline for the prevention of ventilator-associated pneumonia. Ann Intern Med 2004; 141: 305-313. 2. Sackett DL. The sins of expertness and a proposal for redemption. BMJ 2000; 320: 1283. 3. Collard HR, Saint S. Preventive practices for ventilator-associated pneumonia. In: Shojania KG, Duncan BW, McDonald KM, Wachter RM eds. Making Health Care Safer: A Critical Analysis of Patient Safety Practices. Evidence Report/Technology Assessment No 43. Agency for Healthcare Research and Quality publication 01 "“ E058. Rockville, MD, Agency for Healthcare Research and Quality; 2001. 4. Vandenbroucke-Grauls CM, Vandenbroucke JP. Effect of selective decontamination of the digestive tract on respiratory tract infections and mortality in the intensive care unit. Lancet 1991; 338: 859-862. 5. Hurley JC. Prophylaxis with enteral antibiotics in ventilated patients: selective decontamination or selective cross-infection? Antimicrob Agents Chemother 1995; 39: 941-947. 6. van Nieuwenhoven CA, Buskens E, van Tiel FH, Bonten MJ. Relationship between methodological trial quality and the effects of selective digestive decontamination on pneumonia and mortality in critically ill patients. JAMA 2001; 286: 335-340. 7. Selective Decontamination of the Digestive Tract Trialists' Collaborative Group. Meta-analysis of randomized controlled trials of selective decontamination of the digestive tract. BMJ 1993; 307: 525-532. 8. D'Amico R, Pifferi S, Leonetti C, Torri V, Tinazzi A, Liberti A on behalf of the study investigators. Effectiveness of antibiotic prophylaxis in critically ill adult patients: systematic review of randomized controlled trials. BMJ 1998; 316: 1275-1285. 9. Liberati A, D'Amico R, Pifferi S, Torri V, Brazzi L. Antibiotic prophylaxis to reduce respiratory tract infections and mortality in adults receiving intensive care [Cochrane Review]. In: The Cochrane Library, Issue 1, 2004, Chichester, UK: John Wiley & Sons Ltd. 10. Tonnesen EK, Toft P. Antibiotic prophylaxis in adult critically ill patients in intensive care units. Ugeskr Laeger 1999; 161: 15-17. 11. de Jonge E, Schultz MJ, Spanjaard L, Bossuyt PMM, Vroom MB, Dankert J et al. Effects of selective decontamination of the digestive tract on mortality and acquisition of resistant bacteria in intensive care: a randomised controlled trial. Lancet 2003; 362: 1011-1016. 12. Brun Buisson C, Legrand P, Rauss A, Richard C, Montravers F, Besbes M et al. Intestinal decontamination for control of nosocomial multi- resistant Gram-negative bacilli. Ann Intern Med 1989; 110: 873-881. 13. Arnow PM, Carandang GR, Zabner R, Irwin ME. Randomised controlled trial of selective bowel decontamination for prevention of infections following liver transplantation. Clin Infect Dis 1996; 22: 997-1003. 14. Hellinger WC, Yao JD, Alvarez S, Blair JE, Cowley JJ, Paya CV et al. A randomised, prospective, double-blind evaluation of selective bowel decontamination in liver transplantation. Transplantation 2002; 73: 1904- 1909. 15. Ferrer M, Torres A, Gonzalez J, de la Bellacasa JP, El-Ebiary M, Roca M et al. Utility of selective digestive decontamination in mechanically ventilated patients. Ann Intern Med 1994; 120: 389-395. 16. Gastinne H, Wolff M, Delatour F, Faurisson F, Chevret S for the French Study Group on Selective Decontamination of the Digestive Tract. N Engl J Med 1992; 326: 594-599. 17. Hammond JMJ, Potgieter PD, Saunders GL, Forder AA. Double-blind study of selective decontamination of the digestive tract in intensive care. Lancet 1992; 340: 5-9. 18. Lingnau W, Berger J, Javorsky F, Lejeune Ph, Mutz N, Benzer H. Selective intestinal decontamination in multiple trauma patients: prospective, controlled trial. J Trauma 1997; 42: 687-694. 19. Verwaest Ch, Verhaegen J, Ferdinande P, Schetz M, van den Berge G, Verbist L, Lauwers P. Randomised, controlled trial of selective digestive decontamination in 600 mechanically ventilated patients in a multi disciplinary intensive care unit. Crit Care Med 1997; 25: 63-71. 20. Wiener J, Itokazu G, Nathan C, Kabins SA, Weinstein RA. A randomized, double-blind, placebo-controlled trial of selective digestive decontamination in a medical-surgical intensive care unit. Clin Infect Dis 1995; 20: 861-867. 21. de la Cal MA, Cerda E, Garcia-Hierro P, van Saene HKF, Gomez-Santos D, Negro E, Lorente JA. Survival benefit in critically ill burned patients receiving selective decontamination of the digestive tract: A randomised, placebo-controlled, double-blind trial. Ann Surg 2004: published on line. 22. Sanchez M, Mir N, Canton R et al. The effect of topical vancomycin on acquisition, carriage and infection with methicillin-resistant Staphylococcus aureus in critically ill patients. A double-blind, randomized, placebo-controlled study. 37th ICAAC, 1997 Toronto, Canada, Abstract J-119, page 310. 23. Silvestri L, van Saene HKF, Milanese M et al. Prevention of MRSA pneumonia by oral vancomycin decontamination: a randomised trial. Eur Respir J 2004; 23: 921-926. 24. Bergmans DCJJ, Bonten MJM, Gaillard CA, Paling JC, van der Geest S, van Tiel FH et al. Prevention of ventilator-associated pneumonia by oral decontamination. A prospective, randomized, double-blind, placebo- controlled study. Am J Respir Crit Care Med 2001; 164: 382-388. 25. Gaussorgues Ph, Salord F, Sirodot M, Tigaud S, Cagnin S, Gerard M et al. Nosocomial bacteremia in patients under mechanical ventilation and receiving beta-inotropic drugs: efficacy of digestive decontamination. Rean Soins Intens Med Urg 1991; 7: 169-174. 26. Korinek AM, Laisne MJ, Nicolas MH, Raskine L, Deroin V, Sanson-Lepors MJ. Selective decontamination of the digestive tract in neuro-surgical intensive care unit patients: A double-blind, randomized, placebo- controlled study. Crit Care Med 1993; 21: 1466-1473. 27. Krueger WA, Lenhart FP, Neeser G, Ruckdeschel G, Schreckhase H, Eissner HJ et al. Influence of combined intravenous and topical antibiotic prophylaxis on the incidence of infections, organ dysfunctions, and mortality in critically ill surgical patients. A prospective, stratified, randomized, double-blind, placebo-controlled clinical trial. Am J Respir Crit Care Med 2002; 166: 1029-1037. 28. Pugin J, Auckenthaler R, Lew DP, Suter PM. Oropharyngeal decontamination decreases incidence of ventilator-associated pneumonia. A randomized, placebo-controlled, double-blind clinical trials. JAMA 1991; 265: 2704-2710. 29. Schardey HM, Joosten U, Finke U, Staubach KH, Schauer R, Heiss A et al. The prevention of anastomotic leakage after total gastrectomy with local decontamination. A prospective, randomized, double-blind, placebo- controlled multicenter trial. Ann Surg 1997; 225: 172-180. 30. Hammond JMJ, Potgieter PD. Long-term effects of selective decontamination on antimicrobial resistance. Crit Care Med 1995; 23: 637- 645. 31. Stoutenbeek CP, van Saene HKF, Zandstra DF. The effect of oral non- absorbable antibiotics on the emergence of resistant bacteria in patients in an intensive care unit. J Antimicrob Chemother 1987; 19: 513-520. 32. Lingnau W, Berger J, Javorsky F, Fille M, Allenberger F, Benzer H. Changing bacterial ecology during a five year period of selective intestinal decontamination. J Hosp Infect 1998; 39: 195-206. 33. Sarginson RE, Taylor N, Reilly N, Baines PB, van Saene HKF. Infection in prolonged pediatric critical illness. A prospective four-year study based on knowledge of the carrier state. Crit Care Med 2004; 32: 839-847. 34. Leone M, Albanese J, Antonini F, Nguyen-Michel A, Martin C. Long-term [6 year] effect of selective digestive decontamination on antimicrobial resistance in intensive care, multitrauma patients. Crit Care Med 2003; 31: 2090-2095. 35. de la Cal MA, Cerda E, van Saene HKF, Garcia-Hierro P, Negro E, Parra ML et al. Effectiveness and safety of enteral vancomycin to control endemicity of methicillin-resistant Staphylococcus aureus in a medical/surgical intensive care unit. J Hosp Infect 2004; 56: 175-183. 36. Tetteroo GWM, Wagenvoort JHT, Bruining HA. Bacteriology of selective decontamination: efficacy and rebound colonization. J Antimicrob Chemother 1994; 34: 139-148. 37. Abella A, de la Cal MA, Cerda E, Lopez L, Alia I, Garcia-Hierro P et al. Control of MRSA endemicity with enteral vancomycin in a burn intensive care unit. Intensive Care Med 2004; 30 [Suppl 1]: Abstract 556, p S145. 38. Andersen HC. Hans Christian Andersen's Fairy Tales [The Classic Children's Treasury] Running Press, 1996.

Conflict of Interest:

None declared

Submit a Comment

Summary for Patients

Clinical Slide Sets

Terms of Use

The In the Clinic® slide sets are owned and copyrighted by the American College of Physicians (ACP). All text, graphics, trademarks, and other intellectual property incorporated into the slide sets remain the sole and exclusive property of the ACP. The slide sets may be used only by the person who downloads or purchases them and only for the purpose of presenting them during not-for-profit educational activities. Users may incorporate the entire slide set or selected individual slides into their own teaching presentations but may not alter the content of the slides in any way or remove the ACP copyright notice. Users may make print copies for use as hand-outs for the audience the user is personally addressing but may not otherwise reproduce or distribute the slides by any means or media, including but not limited to sending them as e-mail attachments, posting them on Internet or Intranet sites, publishing them in meeting proceedings, or making them available for sale or distribution in any unauthorized form, without the express written permission of the ACP. Unauthorized use of the In the Clinic slide sets will constitute copyright infringement.

Toolkit

Want to Subscribe?

Learn more about subscription options

Advertisement
Related Articles
Related Point of Care
Topic Collections
PubMed Articles

Want to Subscribe?

Learn more about subscription options

Forgot your password?
Enter your username and email address. We'll send you a reminder to the email address on record.
(Required)
(Required)