0
Clinical Guidelines |

Screening Adults for Type 2 Diabetes: A Review of the Evidence for the U.S. Preventive Services Task Force FREE

Susan L. Norris, MD, MPH; Devan Kansagara, MD; Christina Bougatsos, BS; and Rongwei Fu, PhD
[+] Article and Author Information

From the Oregon Evidence-based Practice Center of the Oregon Health & Science University and Portland Veterans Administration Medical Center, Portland, Oregon.


Acknowledgment: The following people provided valuable guidance and insights: Mark Helfand, MD, MPH, Evelyn Whitlock, MD, MPH, and Peggy Nygren, MA, of the Oregon Evidence-based Practice Center; Tracy Wolff, MD, MPH, and Mary Barton, MD, MPP, at the Agency for Healthcare Research and Quality; and the U.S. Preventive Services Task Force members Ned Calonge, MD, Russ Harris, MD, MPH, George Isham, MD, MS, and Virginia Moyer, MD, MPH. The authors thank Andrew Hamilton, MLS, MS, for assistance in developing and running search strategies; Peggy Nygren, MA, and Tracy Dana, MLS, for assistance with data abstraction; and Sarah Baird, MS, for technical assistance.

Grant Support: This report was conducted by the Oregon Evidence-based Practice Center under contract to the Agency for Healthcare Research and Quality (contract no. 290-02-0024, Task Order no. 2 for the U.S. Preventive Services Task Force).

Potential Financial Conflicts of Interest: None disclosed.

Requests for Single Reprints: Susan L. Norris, MD, MPH, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mail Stop B1CC, Portland, OR 97239.

Current Author Addresses: Drs. Norris and Fu and Ms. Bougatsos: Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mail Stop BICC, Portland, OR 97239.

Dr. Kansagara: Portland Veterans Administration Medical Center, 3710 SW US Veterans Hospital Road, Portland, OR 97239.


Ann Intern Med. 2008;148(11):855-868. doi:10.7326/0003-4819-148-11-200806030-00008
Text Size: A A A

Background: More than 19 million Americans are affected by type 2 diabetes mellitus, which is undiagnosed in one third of these persons. In addition, it is estimated that more than 54 million adults have prediabetes. Debate continues over the benefits and harms of screening and then treating adults who have asymptomatic diabetes or prediabetes.

Purpose: To update the 2003 U.S. Preventive Services Task Force review on the evidence for potential benefits and harms of screening adults for type 2 diabetes and prediabetes in primary care settings.

Data Sources: MEDLINE and the Cochrane Library for relevant studies and systematic reviews published in English between March 2001 and July 2007.

Study Selection: Trials and observational studies that directly addressed the effectiveness and adverse effects of screening interventions were included. Randomized, controlled trials were used to assess the effectiveness of diabetes and prediabetes treatments. For diabetes interventions, trials of patients with disease for 1 year or less were included, as well as trials comparing outcomes among diabetic and nondiabetic patients.

Data Extraction: Relevant data were abstracted in duplicate into a standardized template.

Data Synthesis: Data were synthesized in a qualitative manner, and a random-effects meta-analysis of the effects of interventions in prediabetes on the incidence of diabetes was performed.

Limitations: Most of the data on diabetes treatment were not from primary trial data but from subgroup analyses. Participants in intensive lifestyle interventions for prediabetes may not be representative of general prediabetic populations.

Conclusion: Direct evidence is lacking on the health benefits of detecting type 2 diabetes by either targeted or mass screening, and indirect evidence also fails to demonstrate health benefits for screening general populations. Persons with hypertension probably benefit from screening, because blood pressure targets for persons with diabetes are lower than those for persons without diabetes. Intensive lifestyle and pharmacotherapeutic interventions reduce the progression of prediabetes to diabetes, but few data examine the effect of these interventions on long-term health outcomes.

The 2002 National Health and Nutrition Examination Survey estimated that 19.3 million U.S. adults (9.3% of the total U.S. population) had diabetes mellitus, one third of whom had undiagnosed diabetes (1). In addition, 26.0% had impaired fasting glucose and impaired glucose tolerance was even more prevalent (2). The prevalence of diagnosed diabetes is increasing, particularly among obese individuals (1, 3). The risk for death among persons with diabetes is about twice that of persons without diabetes, and cardiovascular events account for more than three fourths of these deaths (4).

Type 2 diabetes often goes undiagnosed for many years because hyperglycemia develops gradually and may not produce symptoms (3, 5). Persons with diabetes are at increased risk for microvascular and macrovascular complications, and duration of diabetes and degree of hyperglycemia are associated with an increased risk for microvascular complications (69). The prevalence of macrovascular complications is elevated in persons with prediabetes (defined as impaired fasting glucose, impaired glucose tolerance, or both) and in persons with newly diagnosed diabetes (1018). A substantial proportion of persons presenting with a new cardiovascular event have undiagnosed diabetes or prediabetes (10, 1923). Several recent observational studies and a meta-analysis suggest an association between chronic hyperglycemia and cardiovascular disease and stroke (2427).

Diabetes has a long preclinical phase, estimated at 10 to 12 years on the basis of the progression of microvascular complications (28), and valid and reliable tests can detect type 2 diabetes during this asymptomatic period (29). The previous evidence review for the U.S. Preventive Services Task Force (USPSTF) (2930) suggested that screening is justified if the ensuing treatments offer incremental net benefits compared with treatment at the time of clinical presentation. In 2003, the USPSTF concluded that the evidence was insufficient to recommend for or against routinely screening asymptomatic adults for type 2 diabetes or prediabetes, but it did recommend screening for adults with hypertension or hyperlipidemia (31).

This review summarizes evidence that has become available since the previous report to inform an update of the 2003 USPSTF recommendations on screening for type 2 diabetes and prediabetes.

The methods of the USPSTF evidence reviews are fully detailed elsewhere (32). The analytic framework (Appendix Figure 1) focuses on decreasing the risk for complications from type 2 diabetes as a result of screening for diabetes. We did not consider secondary prevention studies that exclusively enrolled persons with known cardiovascular disease, because we considered those persons to have a potential preexisting diabetes complication.

Grahic Jump Location
Appendix Figure 1.
Analytic framework.

KQ = key question.

Grahic Jump Location

We searched MEDLINE and the Cochrane Library for relevant English-language systematic reviews and studies published between March 2001 (6 months before the end date of the previous search) and July 2007 related to 5 key questions. We also examined the reference lists of included studies and ClinicalTrials.gov for relevant trials. We evaluated all studies included in relevant systematic reviews for potential inclusion. We included randomized, controlled trials (RCTs) and observational studies that examined the effectiveness or adverse effects of screening and diagnosis of type 2 diabetes. We used RCTs to assess the effectiveness of diabetes and prediabetes treatments. For diabetes interventions, we included trials with patients who had disease for 1 year or less, as well as trials comparing outcomes among diabetic and nondiabetic populations. We used good-quality systematic reviews to assess the adverse effects of treatment. Search strategies are available in the full evidence report, which can be found at http://www.ahrq.gov/clinic/uspstf/uspstopics.htm.

An investigator screened titles and abstracts, and a random sample of 1500 titles and abstracts was dual reviewed. Two reviewers examined the full text of potentially relevant articles to achieve consensus on inclusion (Figure). Data were abstracted by one investigator and checked by another. We assessed internal validity of individual trials by examining factors that might introduce bias: adequate randomization, allocation concealment, baseline comparability of participants, blinding, and loss to follow-up. We rated studies as good, fair, or poor quality by using standard USPSTF criteria (32). We rated systematic reviews on the basis of established criteria, and we included only good-quality reviews (3334). We assessed potential applicability of individual studies to primary care practice on the basis of the methods of participant recruitment and selection.

Grahic Jump Location
Figure.
Study flow diagram.

KQ = key question. *Cochrane databases were the Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Database of Abstracts of Reviews of Effects. †Other sources were reference lists and expert referrals.

Grahic Jump Location

We identified studies that modeled screening interventions from our main search, as well as from a recent, good-quality systematic review of screening for type 2 diabetes by the National Health Service Research and Development Health Technology Assessment Programme (35). We independently abstracted the relevant studies included in that report and relied on their extensive assessments of model quality.

We performed a qualitative synthesis of abstracted data that were generally too heterogeneous for quantitative pooling, except for estimates of the effect of pharmacotherapeutic or lifestyle interventions on diabetes incidence in prediabetic populations. We calculated these pooled estimates by using a hazard ratio and its SE from Cox regression; either a rate ratio or a risk ratio was calculated when a hazard ratio was not reported (3638). We tested for statistical heterogeneity with the standard chi-square test and obtained the overall estimates of relative risk by using a random-effects model (39).

Role of the Funding Source

This study was funded by the Agency for Healthcare Research and Quality (AHRQ) under a contract to support the work of the USPSTF. Agency staff and USPSTF members participated in the initial scope of this work and reviewed interim analyses and the final report. A draft version was distributed to content experts for review. Agency approval was required before this manuscript could be submitted for publication, but the authors are solely responsible for the content and the decision to submit it for publication.

Key Question 1

Is there direct evidence that systematic screening for type 2 diabetes, impaired fasting glucose, or impaired glucose tolerance among asymptomatic adults improves health outcomes?

We identified no RCTs examining the effectiveness of a screening program for type 2 diabetes. A small, good-quality, case–control study did not find benefit from screening when microvascular complications were considered (40). Limited data from 2 cross-sectional studies did not provide good-quality, direct evidence of the effectiveness of screening for type 2 diabetes in either targeted or general populations (4142).

Of modeling studies identified (35, 4348), 2 recent high-quality studies suggested that targeted screening for type 2 diabetes among persons with hypertension may be relatively cost-effective when macrovascular benefits of optimal blood pressure control are considered (35, 47), older persons benefitted more than younger persons (35, 47), and screening obese persons was more cost-effective than mass screening (35).

The ADDITION (Anglo-Danish-Dutch Study of Intensive Treatment in People with Screen Detected Diabetes in Primary Care) study (49), currently in progress, may shed light on differences in baseline characteristics and long-term health outcomes between persons with screening-detected diabetes and those who present with symptoms.

Key Question 2

Does beginning treatment of type 2 diabetes early as a result of screening provide an incremental benefit in health outcomes compared with initiating treatment after clinical diagnosis?

We identified no studies that directly explored this question by comparing treatment effects between persons with screening-detected versus clinically detected diabetes, nor did we identify new studies reporting treatment effects in an exclusively screening-detected or recently diagnosed diabetes cohort. Because of the lack of direct evidence, we examined intervention studies comparing treatment effects in diabetic versus nondiabetic populations (5061) to address the question: “Would early knowledge of a diabetes diagnosis prompt a change in clinical management?”

Tight Glycemic Control

No new, completed studies have examined the effect of glycemic control strategies in persons with newly diagnosed type 2 diabetes since the previous USPSTF review (29). The UKPDS (United Kingdom Prospective Diabetes Study) (62) remains the largest and most influential trial of intensive glycemic control in persons with newly diagnosed, mainly clinically detected, type 2 diabetes. In the UKPDS, persons assigned to intensive glycemic control had a 25% reduction (95% CI, 7% to 40%) in microvascular complications, mostly due to a reduced need for retinal photocoagulation, as well as a nonsignificant 16% relative risk reduction (CI, 71% to 100%) of myocardial infarction (62). The UKPDS investigators estimated that 19.6 persons (CI, 10 to 500 persons) would need to be intensively treated for 10 years to prevent 1 person from developing any single clinical end point (62). A recent meta-analysis combined results from the UKPDS and other older trials examined in the last USPSTF review, and it concluded that tight glycemic control resulted in a modest reduction of macrovascular events, particularly peripheral vascular and cerebrovascular events, in persons with type 2 diabetes (combined incidence rate ratio for any macrovascular event, 0.81 [CI, 0.73 to 0.91]) (27). Examination of the individual trials, however, showed largely nonsignificant results, and it was unclear how overlapping populations from the UKPDS were accounted for in the meta-analysis.

It is unlikely that good-quality trial evidence of the final health benefits of early glycemic control in a screening-detected population will ever be available because withholding treatment from persons with known diabetes is unethical and the length of follow-up required might be prohibitive. The ADDITION study (49) should provide valuable information, although it will be assessing the incremental benefit of very aggressive glycemic control over current standards for glycemic control in a screened population.

Specific Antihypertensive Treatment

There is no clear evidence that persons with diabetes detected by screening would respond differently to specific antihypertensive regimens compared with persons without diabetes. We found no new studies involving antihypertensive agents in screening-detected individuals; however, we identified 2 new trials comparing the effect of different antihypertensive regimens in persons with and those without diabetes (Appendix Table 1) (5152). The ALLHAT (Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial) (51) was an effectiveness trial showing no demonstrable advantage of either a calcium-channel blocker or an angiotensin-converting enzyme inhibitor over a thiazide diuretic in reducing deaths or cardiovascular events in both the diabetes and nondiabetes subgroups. A second study compared verapamil with either a β-blocker or a thiazide diuretic and found no evidence of a differential effect on cardiovascular outcomes between those with and those without diabetes (52). However, neither trial was originally powered to detect differences between the diabetes and nondiabetes subgroups. A third trial (included in the previous USPSTF review [29]) examined persons with hypertension and left ventricular hypertrophy. It showed that persons with diabetes had lower cardiovascular mortality with losartan compared with atenolol, and those without diabetes experienced a reduction in stroke with losartan (5354).

Table Jump PlaceholderAppendix Table 1.  Randomized, Controlled Trials of Hypertension Treatment in Diabetic Populations

We identified 1 meta-analysis of antihypertensive trials that compared outcomes between persons with and those without diabetes (63). Angiotensin-receptor blockers provided significantly greater protection against congestive heart failure for those with diabetes than for those without diabetes. All of the studies of angiotensin-converting enzyme inhibitors compared with placebo were secondary prevention trials, except for the HOPE (Heart Outcomes Prevention Evaluation) trial, which was a combination of primary and secondary prevention (6465) and was included in the previous USPSTF review (29). The HOPE trial showed that persons with type 2 diabetes and at least moderate cardiovascular risk (age >55 years and 1 additional cardiovascular risk factor) experienced a 25% relative risk reduction (CI, 12% to 36%) in cardiovascular events, cardiovascular deaths, and stroke with ramipril treatment—a similar benefit to that achieved in persons with a history of ischemic heart disease and no diabetes (6465).

Intensity of Antihypertensive Treatment

As discussed in the previous USPSTF review (29), 1 trial (the HOT [Hypertension Optimal Treatment] trial [66]) provided evidence that aggressive blood pressure control in persons with diabetes reduces cardiovascular morbidity. In that trial, the diabetes subgroup experienced a 51% relative risk reduction in cardiovascular events from more aggressive blood pressure control, a greater benefit than that observed in nondiabetic patients (29, 66). We did not identify new trials comparing intensive and less intensive blood pressure treatment targets in persons with and without diabetes. A recent meta-analysis presented limited evidence that higher-intensity antihypertensive treatment reduces the risk for major cardiovascular events in persons with diabetes (relative risk, 0.64 [CI, 0.46 to 0.89]) but not in those without diabetes (63); the differential effect on cardiovascular mortality was less clear. The ACCORD (Action to Control Cardiovascular Risk in Diabetes) trial, currently in progress, will examine the relative benefits of very intensive blood pressure control compared with more moderate standards (target systolic blood pressure <120 mm Hg vs. <140 mm Hg) (67).

Initiation of Lipid-Lowering Treatment

Studies of intensive lipid-lowering treatment suggest that persons with diabetes benefit to a similar extent as those without diabetes. For this update, we identified 4 trials (Appendix Table 2) (50, 55, 5758) and 1 meta-analysis (68) examining the effects of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors on primary prevention of cardiovascular events and deaths in persons with and without diabetes. In 1 trial, neither the diabetes group nor the nondiabetes subgroup benefited from statin treatment in reducing mortality or cardiovascular event rates, but the rate of nonstudy statin use was high in the control group and the differential reduction in low-density lipoprotein cholesterol between study groups was relatively small (50). In 2 fair-quality trials, statin therapy did not significantly reduce the primary end point (coronary events in 1 trial and coronary and/or stroke events in the other) in the diabetes subgroup, but it did benefit the nondiabetes subgroup (55, 58). Comparisons between persons with and those without diabetes were hampered by a relatively low absolute number of events in the diabetes subgroup.

Table Jump PlaceholderAppendix Table 2.  Randomized, Controlled Trials of Lipid Interventions in Diabetic and Nondiabetic Populations*

The Heart Protection Study (57) was a large, good-quality RCT examining the efficacy of an HMG-CoA reductase inhibitor in primary and secondary prevention of cardiovascular events and death. Persons with diabetes had a similar reduction in cardiovascular events (relative risk reduction, 27% [CI, 7% to 40%]) as did persons without diabetes who had known vascular disease, and the benefit was independent of initial low-density lipoprotein cholesterol levels. Many in the diabetes subgroup had additional cardiovascular risk factors, including smoking, hypertension, dyslipidemia (high triglyceride and low high-density lipoprotein cholesterol levels), or a combination of these. Although persons with shorter diabetes duration seemed to benefit to a similar extent as those with much longer-duration diabetes, power was insufficient to determine whether participants with newly diagnosed diabetes (that is, ≤1 year) benefited to a significant extent.

A recent meta-analysis of 6 primary prevention trials—the 4 just discussed, an older trial using a fibric acid derivative, and an older statin trial—reported that lipid-lowering drug treatment seemed to be equally efficacious in persons with and those without diabetes (68).

Aspirin for Primary Prevention

The previous USPSTF review (29) included several trials of aspirin for primary prevention of cardiovascular disease. The Antithrombotic Trialists' Collaborative meta-analysis showed a nonsignificant 7% relative risk reduction in the incidence of vascular events in the high-risk diabetic population (69), a result mainly driven by the results of the ETDRS (Early Treatment Diabetic Retinopathy Study), in which the incidence of fatal and nonfatal coronary events decreased in the treatment group (relative risk, 0.83 [CI, 0.66 to 1.04]) (70). In the Physicians' Health Study (71), aspirin was associated with significant cardiovascular risk reduction in persons with diabetes, and the benefit seemed greater in those with diabetes than in those without.

We identified 2 new studies of low-dose aspirin for primary prevention of cardiovascular events in persons with and without diabetes (5960). In the Primary Prevention Project (59), the subgroup with diabetes did not experience any benefit, whereas the subgroup without diabetes experienced a reduction in the incidence of major cardiovascular and cerebrovascular events (relative risk, 0.59 [CI, 0.37 to 0.94]). This fair-quality study was stopped early, with a resultant low event rate in both groups. Given the small size of the group with diabetes, the trial was probably underpowered to detect a difference in this subgroup. The Women's Health Study (60), a large, good-quality trial, showed that aspirin reduced the incidence of ischemic stroke (relative risk, 0.42 [CI, 0.22 to 0.82]), but not cardiovascular events, in women with diabetes. There was no evidence that the effect of aspirin was significantly more pronounced in women with diabetes than in those without. The difference in results between the Primary Prevention Project (59) and the Women's Health Study (60) may be due to differences in the populations considered or to the differential risks for stroke versus those for myocardial infarction (the rate of stroke was higher than that of myocardial infarction in the Women's Health Study).

Key Question 3

Does beginning treatment of impaired fasting glucose or impaired glucose tolerance early as a result of screening provide an incremental benefit in final health outcomes compared with initiating treatment after clinical diagnosis of type 2 diabetes?

Three studies reported cardiovascular outcomes with intensive lifestyle interventions in persons with prediabetes (36, 7273). In the DPP (Diabetes Prevention Program) (36), neither the cumulative incidence of cardiovascular disease nor the event rate differed among treatment groups; however, the study was not adequately powered to examine these outcomes (74). The STOP-NIDDM (Study to Prevent Non–Insulin-Dependent Diabetes Mellitus) trial (72), in which patients with impaired glucose tolerance were randomly assigned to placebo or acarbose, showed a reduction in cardiovascular events of any type (hazard ratio, 0.51 [CI, 0.28 to 0.95]; absolute risk reduction, 2.5%). However, this study was limited by an attrition rate of 24% overall, with a much higher rate in the treatment group. In the DREAM (Diabetes Reduction Assessment with Ramipril and Rosiglitazone Medication) trial (73, 75), the incidence rate of the primary composite outcome of cardiovascular events did not significantly differ between the rosiglitazone and placebo groups (hazard ratio, 1.37 [CI, 0.97 to 1.94]) (75) (Appendix Table 3).

Table Jump PlaceholderAppendix Table 3.  Randomized, Controlled Trials of Interventions in Prediabetes

Many studies have examined the effect of lifestyle interventions on the incidence of type 2 diabetes among persons with prediabetes (36, 38, 7681), several of which (36, 76, 8081) were included in the previous review (29). In the DPP (36), the incidence of diabetes was reduced at 3-year follow-up with an intensive lifestyle intervention (reduction in incidence, 58% [CI, 48% to 66%]) and with treatment with metformin (reduction in incidence, 31% [CI, 17% to 43%]), both compared with placebo. The Finnish Diabetes Prevention study (76) examined a lifestyle intervention, and the incidence rate of diabetes was significantly reduced at mean follow-up of 3.2 years (hazard ratio, 0.4 [CI, 0.3 to 0.7]). This was maintained 3 years after completion of the intervention (hazard ratio, 0.57 [CI, 0.43 to 0.76]) (82). A Chinese study also reported a significant decrease in the incidence of type 2 diabetes at 6-year follow-up with an intensive lifestyle intervention (80). Two smaller, more recent trials examined the effect of lifestyle interventions on incidence rates of diabetes among persons with prediabetes and found a significant decrease in incidence compared with usual care (38, 77).

Several recent studies examined the effect of pharmacotherapeutic interventions on diabetes incidence. In the DREAM trial (73, 75), rosiglitazone reduced the incidence of diabetes among persons with prediabetes when it was administered for a median of 3.0 years (hazard ratio, 0.38 [CI, 0.33 to 0.44]) (75), whereas ramipril was not effective in reducing the incidence of diabetes (73). In the STOP-NIDDM trial (72), the incidence rate of type 2 diabetes was reduced significantly in the acarbose treatment group over the 3.3-year intervention (hazard ratio, 0.75 [CI, 0.63 to 0.90]).

In the XENDOS (XENical in the Prevention of Diabetes in Obese Subjects) study (83), which was rated fair-to-poor quality because of high attrition, orlistat reduced the incidence of type 2 diabetes over 4 years in patients with impaired glucose tolerance (hazard ratio, 0.55 [CI not reported]) (83). A meta-analysis of 3 other studies of orlistat produced similar results (37). Acarbose (84) and metformin (77) also decreased diabetes incidence at up to 3-year follow-up. Two studies of interventions in persons with prediabetes are in progress, and published results are not yet available (8586).

Results from our meta-analyses showed that the incidence of type 2 diabetes was decreased with lifestyle interventions (pooled hazard ratio, 0.48 [CI, 0.40 to 0.58]) (Appendix Figures 2 and 3). Pharmacotherapeutic interventions also reduced diabetes incidence (pooled hazard ratio, 0.65 [CI, 0.51 to 0.83]), although the data were statistically heterogeneous largely due to the effect of the rosiglitazone group of the DREAM trial (73).

Grahic Jump Location
Appendix Figure 2.
Diabetes incidence in lifestyle trials.

DPP = Diabetes Prevention Program.

Grahic Jump Location
Grahic Jump Location
Appendix Figure 3.
Diabetes incidence in drug trials.

DPP = Diabetes Prevention Program; DREAM = Diabetes Reduction Assessment with Ramipril and Rosiglitazone Medication.

Grahic Jump Location

We did not identify any data to address the question of whether there should be different treatment targets for lipid levels and blood pressure for persons with prediabetes compared with normoglycemic persons.

We identified only 1 study examining the comparative effectiveness of different medications for treating hyperlipidemia, hypertension, and cardiovascular disease among persons with prediabetes versus those with normoglycemia. The ALLHAT (51) examined various antihypertensive therapies among persons with diabetes, impaired fasting glucose, and normoglycemia and failed to demonstrate superiority for an angiotensin-converting enzyme inhibitor or a calcium-channel blocker compared with a thiazide-type diuretic across the 3 glycemic strata for the composite outcome of coronary heart disease death and nonfatal myocardial infarction.

Modeling studies have been used to examine the treatment of prediabetes (35, 8794). The health technology assessment by Waugh and colleagues (35) recommended screening for glucose intolerance because strategies for reducing cholesterol and blood pressure are effective and because type 2 diabetes can be prevented. Waugh and colleagues seem to assume that the effects of treating persons with screening-detected diabetes are the same as those of treating persons with clinically detected diabetes and that there are proven linkages between treating dysglycemia and final health outcomes. They also systematically reviewed published economic models and noted that, despite the variable quality, structure, and assumptions of the models, all predicted that delaying the onset of diabetes would substantially reduce the incidence of vascular complications, improve quality of life, and avoid future medical costs. They concluded that if a screening program was implemented to target persons at risk for diabetes, subsequent treatment for persons with impaired glucose tolerance with lifestyle or pharmacologic interventions was a good use of resources.

Herman and associates (90) examined the lifetime utility and cost-effectiveness of the DPP lifestyle intervention (36) and found the intervention to be relatively cost-effective (cost per quality-adjusted life-year, $8800 [from a societal perspective]), with a 0.5-year gain in life expectancy and 20% decrease in diabetes incidence. Results were somewhat less marked with metformin, which was still relatively cost-effective.

Eddy and colleagues (8788) examined the DPP interventions and also predicted large absolute reductions in the proportion of persons developing type 2 diabetes and a delay of 7 to 8 years in onset of diabetes, as well as that the DPP lifestyle intervention will lead to fewer complications and improved quality-adjusted life-years (95). They, however, estimated much higher marginal cost-effectiveness ratios than did Herman and associates (96).

Several other models recently evaluated primary prevention of type 2 diabetes among persons with impaired glucose tolerance (9192, 94, 97), and all demonstrated relative cost-effectiveness of lifestyle interventions. Two models examined metformin and found it to be cost-saving under many conditions (92, 97).

Key Question 4

What adverse effects result from screening a person for type 2 diabetes, impaired fasting glucose, or impaired glucose tolerance?

Data are sparse on the psychological effects of screening for type 2 diabetes, and none of the data that we identified suggested significant adverse effects at up to 1-year follow-up (98110). In the ADDITION study (103), stepwise screening had limited effects on anxiety levels at up to 1-year follow-up. In a cross-sectional study, Skinner and colleagues (109) did not find that screening high-risk patients for type 2 diabetes with an oral glucose tolerance test was associated with significant anxiety. Other included studies also did not report any serious psychological effects of a new diagnosis of type 2 diabetes (98104, 107108, 110).

Several studies compared persons with screening-detected diabetes with persons without diabetes. Using Hoorn observational data, Adriaanse and colleagues (100) found no significant differences in well-being and health-related quality of life between patients with newly diagnosed diabetes and those at high risk but without diabetes at 2-week and 1-year follow-ups. Poorer quality-of-life scores at 6-month follow-up in the group with diabetes may suggest a temporary effect. Similar results were found in several other studies (98, 104, 107). In the ADDITION study (102103, 110), persons with screening-detected diabetes generally reported low emotional distress, with some differences in distress and self-efficacy noted between groups treated intensively compared with usual care.

We identified no studies that addressed the effects of a false-positive result from any of the tests used to screen for dysglycemia. We identified no studies that directly addressed labeling of persons with screening-detected diabetes and no studies that examined the effect of a diagnosis of prediabetes.

Key Question 5

What adverse effects result from treating a person with type 2 diabetes, impaired fasting glucose, or impaired glucose tolerance detected by screening?

Recent systematic reviews of the adverse effects of drugs used in treating type 2 diabetes and prediabetes (111136) reveal some important new data related to the safety to thiazolidinediones. An association between rosiglitazone and increased risk for myocardial infarction (134, 137) and heart failure (134) was noted recently. For other drugs examined in the studies included in this review, we identified no new data on severe adverse effects compared with data available at the time of the previous USPSTF review (29). Intensive glucose control in the UKPDS was not associated with high rates of hypoglycemia (0.55% annual incidence of major hypoglycemia) (138). Relatively common side effects, such as cough with angiotensin-converting enzyme inhibitors and gastrointestinal effects with acarbose, should be considered when prescribing these drugs, but they are not associated with increased deaths or adverse cardiovascular outcomes.

No direct evidence clearly determines whether screening asymptomatic individuals for diabetes or prediabetes alters health outcomes (Table 1). Evidence shows that persons with diabetes benefit from control of blood pressure and lipid levels, but studies have not included persons with screening-detected diabetes. Persons with hypertension and type 2 diabetes benefit from lower blood pressure targets than persons with hypertension but without diabetes (66). Persons with newly diagnosed, largely clinically detected, diabetes benefit from intensive glycemic control, largely because of a reduction in microvascular events (62). Evidence shows that intensive lifestyle modification in persons with prediabetes—an implicitly screening-detected population—delays the progression to clinical diabetes, but whether treatment alters final health outcomes is unknown because studies were not powered for those outcomes or were not of sufficient duration.

Tables 2 and 3 show the numbers needed to screen to prevent an outcome of interest in different theoretical populations. These outcomes have not changed from the estimates of the previous USPSTF review (29) because we identified no new data on the effectiveness of these interventions. As noted elsewhere (29), interventions that target cardiovascular events produce greater effects than those that target microvascular complications occurring later in the disease process.

Table Jump PlaceholderTable 2.  Number Needed to Screen for Type 2 Diabetes to Prevent 1 Adverse Event after 5 Years of Additional Treatment
Table Jump PlaceholderTable 3.  Number Needed to Screen for Prediabetes to Prevent 1 Case of Diabetes after 3 Years

On the basis of the DPP (36) and the Finnish Diabetes Prevention Study (76), screening 1000 persons with prediabetes will delay 44 cases of type 2 diabetes over 3.0 years. Pharmacotherapy with metformin (on the basis of DPP data [36]) produced a somewhat less favorable number needed to screen. Many important assumptions underlying number-needed-to-screen estimates remain, including length of the asymptomatic period, prevalence of undiagnosed diabetes or prediabetes, incidence rates of diabetes complications, and treatment effect.

Screening targeted to populations at risk for diabetes would probably increase the yield and economic efficiency of screening, and risk scores have been developed to identify those at high risk for diabetes (139144). In the DPP, older age and higher body mass index increased the yield of screening across ethnic groups (145). On the other hand, the prevalence of diagnosed diabetes in certain high-risk groups, such as non-Hispanic black persons and Mexican- American persons, has increased, whereas the proportion of persons with undiagnosed disease in those groups has decreased, suggesting that opportunistic screening targeted to populations at high risk may already be occurring. This trend reduces the prevalence of undiagnosed diabetes and increases the number needed to screen to prevent adverse events in the remaining unscreened group (1).

A diabetes population of significant interest to a screening program would be individuals who would benefit from aggressive interventions to reduce macrovascular complications in persons who would not have been otherwise identified through recommended hypertension and hyperlipidemia screening (31). Many persons with diabetes are hypertensive or have additional cardiovascular disease risk factors, and those with the highest cardiovascular risk profiles are likely to benefit most from treatment (57, 62, 146148). As shown in the Heart Protection Study (63), elevated low-density lipoprotein cholesterol levels alone may not identify many persons with diabetes and dyslipidemia who might benefit from lipid-lowering treatment, but this population had higher-than-average cardiovascular risk profiles. The benefit of identifying and treating asymptomatic diabetes in normotensive, nondyslipidemic persons at average cardiovascular risk is unclear.

The potential yield of diabetes and prediabetes screening must be weighed carefully against the potential harms of screening and diagnosis. We did not identify evidence suggesting serious adverse effects of screening for type 2 diabetes. The literature does, however, have important limitations. Included studies examined persons at high risk for diabetes, and thus the results may not be applicable to mass screening programs that are not targeted (98100). Theoretical concerns include the effects of labeling (149) on anxiety and insurability, but available evidence is insufficient to support or refute these concerns.

Several limitations deserve mention. First, we restricted our review of diabetes treatment to studies with mean diabetes duration of 1 year or less, because we felt that these patient populations would most closely resemble screening-detected populations. Individuals with long-standing type 2 diabetes will likely show greater benefits from treatment, so focusing on treatment of early disease, in the absence of trials with extended follow-up, may underestimate the effectiveness of treatment and therefore screening interventions. For studies comparing a given treatment among persons with and persons without type 2 diabetes, we included studies of any duration of disease, and the applicability of these data to populations with screening-detected disease is uncertain. Second, attempts to divide patients with diagnosed diabetes into those with a “clinical diagnosis” based on symptoms and those deemed to be “screened” because of alleged asymptomatic status does not truly compare “not screened” with “screened” patients. Third, participants with prediabetes in studies of intensive lifestyle interventions may not be representative of general prediabetic populations. For example, the level of physical inactivity in the DPP cohort was less than that reported in the Third National Health and Nutrition Examination Survey (150). Fourth, most of the data on diabetes treatment were from prespecified subgroup analyses of large trials that included both diabetic and nondiabetic populations. The diabetes and nondiabetes subgroups had important differences, and subgroup analyses were often underpowered to demonstrate significant changes in primary outcomes. Prevention trials among persons with prediabetes were powered to examine the primary outcome of new cases of diabetes and not to examine long-term health outcomes, such as cardiovascular events.

Models rely on data from trials and observational studies and are only as good as the data and assumptions underlying them. All 7 models that we identified that examined the effect of screening interventions (35, 4348) lack transparency to some degree, and all have had 1 or more of their important underlying assumptions criticized (35).

Further research is needed to define the benefits and harms of screening average-risk individuals for type 2 diabetes. We must learn whether early, aggressive glycemic control in persons with diabetes produces improvements in clinical outcomes after many years of follow-up (151). An extension of the largest study of an initial strategy of sustained tight glycemic control in type 1 diabetes (152) suggested that participants originally randomly assigned to tight glycemic control had a significant reduction in cardiovascular events at long-term follow-up despite similar glycemic control in the control group during the postrandomization period (153). To date, similar data are unavailable for type 2 diabetes. We also need studies to define the duration of the prediabetes phase and identify measurable risk factors for progression to diabetes and its complications, particularly cardiovascular disease.

The cost-effectiveness of diabetes screening programs is considered to be mainly determined by the long-term health benefits rather than the cost of detection and treatment of diabetes (154). Thus, intervention research needs to continue focusing on long-term, sustainable interventions that affect health outcomes in real-world settings. Further work is also needed to examine the effect of screening and diagnosis on patient self-efficacy, motivation for lifestyle change, and the potential psychological effects of labeling.

Direct evidence is lacking on the health benefits of detecting type 2 diabetes by either targeted or mass screening, and indirect evidence also fails to demonstrate health benefits for screening general populations or persons at high risk for diabetes complications without hypertension. Persons with hypertension do benefit from knowing their diagnosis of diabetes, because blood pressure targets are lower than for nondiabetic persons. Although intensive lifestyle interventions delay or prevent diabetes onset in persons with prediabetes, positive effects of this delay on long-term health outcomes have not been adequately demonstrated.

Cowie CC, Rust KF, Byrd-Holt DD, Eberhardt MS, Flegal KM, Engelgau MM. et al.  Prevalence of diabetes and impaired fasting glucose in adults in the U.S. population: National Health And Nutrition Examination Survey 1999-2002. Diabetes Care. 2006; 29:1263-8. PubMed
CrossRef
 
Harris MI, Flegal KM, Cowie CC, Eberhardt MS, Goldstein DE, Little RR. et al.  Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988-1994. Diabetes Care. 1998; 21:518-24. PubMed
 
Gregg EW, Cadwell BL, Cheng YJ, Cowie CC, Williams DE, Geiss L. et al.  Trends in the prevalence and ratio of diagnosed to undiagnosed diabetes according to obesity levels in the U.S. Diabetes Care. 2004; 27:2806-12. PubMed
 
Moss SE, Klein R, Klein BE.  Cause-specific mortality in a population-based study of diabetes. Am J Public Health. 1991; 81:1158-62. PubMed
 
Harris MI, Klein R, Welborn TA, Knuiman MW.  Onset of NIDDM occurs at least 4-7 yr before clinical diagnosis. Diabetes Care. 1992; 15:815-9. PubMed
 
Klein R, Klein BE, Moss SE, Davis MD, DeMets DL.  Glycosylated hemoglobin predicts the incidence and progression of diabetic retinopathy. JAMA. 1988; 260:2864-71. PubMed
 
Stratton IM, Kohner EM, Aldington SJ, Turner RC, Holman RR, Manley SE. et al.  UKPDS 50: risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis. Diabetologia. 2001; 44:156-63. PubMed
 
Younis N, Broadbent DM, Vora JP, Harding SP, Liverpool Diabetic Eye Study.  Incidence of sight-threatening retinopathy in patients with type 2 diabetes in the Liverpool Diabetic Eye Study: a cohort study. Lancet. 2003; 361:195-200. PubMed
 
Henricsson M, Tyrberg M, Heijl A, Janzon L.  Incidence of blindness and visual impairment in diabetic patients participating in an ophthalmological control and screening programme. Acta Ophthalmol Scand. 1996; 74:533-8. PubMed
 
Hu FB, Stampfer MJ, Haffner SM, Solomon CG, Willett WC, Manson JE.  Elevated risk of cardiovascular disease prior to clinical diagnosis of type 2 diabetes. Diabetes Care. 2002; 25:1129-34. PubMed
 
Coutinho M, Gerstein HC, Wang Y, Yusuf S.  The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care. 1999; 22:233-40. PubMed
 
Chowdhury TA, Lasker SS.  Complications and cardiovascular risk factors in South Asians and Europeans with early-onset type 2 diabetes. QJM. 2002; 95:241-6. PubMed
 
Pan WH, Cedres LB, Liu K, Dyer A, Schoenberger JA, Shekelle RB. et al.  Relationship of clinical diabetes and asymptomatic hyperglycemia to risk of coronary heart disease mortality in men and women. Am J Epidemiol. 1986; 123:504-16. PubMed
 
Haffner SM, Stern MP, Hazuda HP, Mitchell BD, Patterson JK.  Cardiovascular risk factors in confirmed prediabetic individuals. Does the clock for coronary heart disease start ticking before the onset of clinical diabetes? JAMA. 1990; 263:2893-8. PubMed
 
McPhillips JB, Barrett-Connor E, Wingard DL.  Cardiovascular disease risk factors prior to the diagnosis of impaired glucose tolerance and non-insulin-dependent diabetes mellitus in a community of older adults. Am J Epidemiol. 1990; 131:443-53. PubMed
 
Meigs JB, Nathan DM, Wilson PW, Cupples LA, Singer DE.  Metabolic risk factors worsen continuously across the spectrum of nondiabetic glucose tolerance. The Framingham Offspring Study. Ann Intern Med. 1998; 128:524-33. PubMed
 
Khaw KT, Wareham N, Luben R, Bingham S, Oakes S, Welch A. et al.  Glycated haemoglobin, diabetes, and mortality in men in Norfolk cohort of european prospective investigation of cancer and nutrition (EPIC-Norfolk). BMJ. 2001; 322:15-8. PubMed
 
Verdecchia P, Reboldi G, Angeli F, Borgioni C, Gattobigio R, Filippucci L. et al.  Adverse prognostic significance of new diabetes in treated hypertensive subjects. Hypertension. 2004; 43:963-9. PubMed
 
Niskanen L, Turpeinen A, Penttilä I, Uusitupa MI.  Hyperglycemia and compositional lipoprotein abnormalities as predictors of cardiovascular mortality in type 2 diabetes: a 15-year follow-up from the time of diagnosis. Diabetes Care. 1998; 21:1861-9. PubMed
 
Taubert G, Winkelmann BR, Schleiffer T, März W, Winkler R, Gök R. et al.  Prevalence, predictors, and consequences of unrecognized diabetes mellitus in 3266 patients scheduled for coronary angiography. Am Heart J. 2003; 145:285-91. PubMed
 
Vancheri F, Curcio M, Burgio A, Salvaggio S, Gruttadauria G, Lunetta MC. et al.  Impaired glucose metabolism in patients with acute stroke and no previous diagnosis of diabetes mellitus. QJM. 2005; 98:871-8. PubMed
 
Rathmann W, Icks A, Haastert B, Giani G, Löwel H, Mielck A.  Undiagnosed diabetes mellitus among patients with prior myocardial infarction. Z Kardiol. 2002; 91:620-5. PubMed
 
Norhammar A, Tenerz A, Nilsson G, Hamsten A, Efendíc S, Rydén L. et al.  Glucose metabolism in patients with acute myocardial infarction and no previous diagnosis of diabetes mellitus: a prospective study. Lancet. 2002; 359:2140-4. PubMed
 
Selvin E, Coresh J, Shahar E, Zhang L, Steffes M, Sharrett AR.  Glycaemia (haemoglobin A1c) and incident ischaemic stroke: the Atherosclerosis Risk in Communities (ARIC) Study. Lancet Neurol. 2005; 4:821-6. PubMed
 
Selvin E, Coresh J, Golden SH, Brancati FL, Folsom AR, Steffes MW.  Glycemic control and coronary heart disease risk in persons with and without diabetes: the atherosclerosis risk in communities study. Arch Intern Med. 2005; 165:1910-6. PubMed
 
Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR. et al.  Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004; 141:421-31. PubMed
 
Stettler C, Allemann S, Jüni P, Cull CA, Holman RR, Egger M. et al.  Glycemic control and macrovascular disease in types 1 and 2 diabetes mellitus: meta-analysis of randomized trials. Am Heart J. 2006; 152:27-38. PubMed
 
Harris MI.  Undiagnosed NIDDM: clinical and public health issues. Diabetes Care. 1993; 16:642-52. PubMed
 
Harris R, Donahue K, Rathore SS, Frame P, Woolf SH, Lohr KN.  Screening adults for type 2 diabetes: a review of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med. 2003; 138:215-29. PubMed
 
Harris RP, Lux LJ, Bunton AJ, Sutton SF, Lohr KN, Donahue KP, et al.  Screening for Type 2 Diabetes Mellitus. (Prepared by RTI International Evidence-based Practice Center under contract 290-97-0011 for the Agency for Healthcare Research and Quality.) Rockville, MD: U.S. Department of Health and Human Services; February 2003. Systematic Evidence Review no. 19.
 
U.S. Preventive Services Task Force.  Screening for type 2 diabetes mellitus in adults: recommendations and rationale. Ann Intern Med. 2003; 138:212-4. PubMed
 
Harris RP, Helfand M, Woolf SH, Lohr KN, Mulrow CD, Teutsch SM. et al.  Current methods of the US Preventive Services Task Force: a review of the process. Am J Prev Med. 2001; 20:21-35. PubMed
 
Oxman AD, Guyatt GH.  Validation of an index of the quality of review articles. J Clin Epidemiol. 1991; 44:1271-8. PubMed
 
National Institute for Health and Clinical Excellence.  The Guidelines Manual. London: National Institute for Health and Clinical Excellence; 2006.
 
Waugh N, Scotland G, McNamee P, Gillett M, Brennan A, Goyder E. et al.  Screening for type 2 diabetes: literature review and economic modelling. Health Technol Assess. 2007; 11:iii-iv, ix-xi, 1-125. PubMed
 
Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Diabetes Prevention Program Research Group.  Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002; 346:393-403. PubMed
 
Heymsfield SB, Segal KR, Hauptman J, Lucas CP, Boldrin MN, Rissanen A. et al.  Effects of weight loss with orlistat on glucose tolerance and progression to type 2 diabetes in obese adults. Arch Intern Med. 2000; 160:1321-6. PubMed
 
Kosaka K, Noda M, Kuzuya T.  Prevention of type 2 diabetes by lifestyle intervention: a Japanese trial in IGT males. Diabetes Res Clin Pract. 2005; 67:152-62. PubMed
 
DerSimonian R, Laird N.  Meta-analysis in clinical trials. Control Clin Trials. 1986; 7:177-88. PubMed
 
Schellhase KG, Koepsell TD, Weiss NS, Wagner EH, Reiber GE.  Glucose screening and the risk of complications in Type 2 diabetes mellitus. J Clin Epidemiol. 2003; 56:75-80. PubMed
 
Olafsdottir E, Andersson DK, Stefánsson E.  Visual acuity in a population with regular screening for type 2 diabetes mellitus and eye disease. Acta Ophthalmol Scand. 2007; 85:40-5. PubMed
 
Agarwal S, Raman R, Kumari RP, Deshmukh H, Paul PG, Gnanamoorthy P. et al.  Diabetic retinopathy in type II diabetics detected by targeted screening versus newly diagnosed in general practice. Ann Acad Med Singapore. 2006; 35:531-5. PubMed
 
CDC Diabetes Cost-Effectiveness Study Group, Centers for Disease Control and Prevention.  The cost-effectiveness of screening for type 2 diabetes. JAMA. 1998; 280:1757-63. PubMed
 
Goyder EC, Irwig LM.  Screening for type 2 diabetes mellitus: a decision analytic approach. Diabet Med. 2000; 17:469-77. PubMed
 
Hofer TP, Vijan S, Hayward RA.  Estimating the microvascular benefits of screening for type 2 diabetes mellitus. Int J Technol Assess Health Care. 2000; 16:822-33. PubMed
 
Chen TH, Yen MF, Tung TH.  A computer simulation model for cost-effectiveness analysis of mass screening for type 2 diabetes mellitus. Diabetes Res Clin Pract. 2001; 54:Suppl 1S37-42. PubMed
 
Hoerger TJ, Harris R, Hicks KA, Donahue K, Sorensen S, Engelgau M.  Screening for type 2 diabetes mellitus: a cost-effectiveness analysis. Ann Intern Med. 2004; 140:689-99. PubMed
 
Glümer C, Yuyun M, Griffin S, Farewell D, Spiegelhalter D, Kinmonth AL. et al.  What determines the cost-effectiveness of diabetes screening? Diabetologia. 2006; 49:1536-44. PubMed
 
Lauritzen T, Griffin S, Borch-Johnsen K, Wareham NJ, Wolffenbuttel BH, Rutten G. et al.  The ADDITION study: proposed trial of the cost-effectiveness of an intensive multifactorial intervention on morbidity and mortality among people with type 2 diabetes detected by screening. Int J Obes Relat Metab Disord. 2000; 24:Suppl 3S6-11. PubMed
 
The ALLHAT Officers.  Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT). JAMA. 2002; 288:2998-3007. PubMed
 
Whelton PK, Barzilay J, Cushman WC, Davis BR, Iiamathi E, Kostis JB. et al.  Clinical outcomes in antihypertensive treatment of type 2 diabetes, impaired fasting glucose concentration, and normoglycemia: Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch Intern Med. 2005; 165:1401-9. PubMed
 
Black HR, Elliott WJ, Grandits G, Grambsch P, Lucente T, White WB. et al.  Principal results of the Controlled Onset Verapamil Investigation of Cardiovascular End Points (CONVINCE) trial. JAMA. 2003; 289:2073-82. PubMed
 
Dahlöf B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U. et al.  Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002; 359:995-1003. PubMed
 
Lindholm LH, Ibsen H, Dahlöf B, Devereux RB, Beevers G, de Faire U. et al.  Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002; 359:1004-10. PubMed
 
Sever PS, Dahlöf B, Poulter NR, Wedel H, Beevers G, Caulfield M. et al.  Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet. 2003; 361:1149-58. PubMed
 
Sever PS, Poulter NR, Dahlöf B, Wedel H, Collins R, Beevers G. et al.  Reduction in cardiovascular events with atorvastatin in 2,532 patients with type 2 diabetes: Anglo-Scandinavian Cardiac Outcomes Trial—lipid-lowering arm (ASCOT-LLA). Diabetes Care. 2005; 28:1151-7. PubMed
 
Collins R, Armitage J, Parish S, Sleigh P, Peto R, Heart Protection Study Collaborative Group.  MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet. 2003; 361:2005-16. PubMed
 
Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM. et al.  Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet. 2002; 360:1623-30. PubMed
 
Sacco M, Pellegrini F, Roncaglioni MC, Avanzini F, Tognoni G, Nicolucci A. et al.  Primary prevention of cardiovascular events with low-dose aspirin and vitamin E in type 2 diabetic patients: results of the Primary Prevention Project (PPP) trial. Diabetes Care. 2003; 26:3264-72. PubMed
 
Ridker PM, Cook NR, Lee IM, Gordon D, Gaziano JM, Manson JE. et al.  A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. N Engl J Med. 2005; 352:1293-304. PubMed
 
Olivarius NF, Beck-Nielsen H, Andreasen AH, Hørder M, Pedersen PA.  Randomised controlled trial of structured personal care of type 2 diabetes mellitus. BMJ. 2001; 323:970-5. PubMed
 
UK Prospective Diabetes Study (UKPDS) Group.  Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998; 352:837-53. PubMed
 
Turnbull F, Neal B, Algert C, Chalmers J, Chapman N, Cutler J. et al.  Effects of different blood pressure-lowering regimens on major cardiovascular events in individuals with and without diabetes mellitus: results of prospectively designed overviews of randomized trials. Arch Intern Med. 2005; 165:1410-9. PubMed
 
Heart Outcomes Prevention Evaluation Study Investigators.  Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet. 2000; 355:253-9. PubMed
 
Bosch J, Lonn E, Pogue J, Arnold JM, Dagenais GR, Yusuf S. et al.  Long-term effects of ramipril on cardiovascular events and on diabetes: results of the HOPE study extension. Circulation. 2005; 112:1339-46. PubMed
 
Hansson L, Zanchetti A, Carruthers SG, Dahlöf B, Elmfeldt D, Julius S. et al.  Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet. 1998; 351:1755-62. PubMed
 
Action to control cardiovascular risk in diabetes (ACCORD) [clinical trial]. ClinicalTrials.gov identifier: NCT00000620. Accessed athttp://www.clinicaltrials.gov/ct2/show/NCT00000620?term=NCT00000620&rank=1on 8 April 2008.
 
Costa J, Borges M, David C, Vaz Carneiro A.  Efficacy of lipid lowering drug treatment for diabetic and non-diabetic patients: meta-analysis of randomised controlled trials. BMJ. 2006; 332:1115-24. PubMed
 
Antithrombotic Trialists' Collaboration.  Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002; 324:71-86. PubMed
 
.  Early Treatment Diabetic Retinopathy Study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology. 1991; 98:741-56. PubMed
 
Steering Committee of the Physicians' Health Study Research Group.  Final report on the aspirin component of the ongoing Physicians' Health Study. N Engl J Med. 1989; 321:129-35. PubMed
 
Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. et al.  Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002; 359:2072-7. PubMed
 
Bosch J, Yusuf S, Gerstein HC, Pogue J, Sheridan P, et al. DREAM Trial Investigators.  Effect of ramipril on the incidence of diabetes. N Engl J Med. 2006; 355:1551-62. PubMed
 
Ratner R, Goldberg R, Haffner S, Marcovina S, Orchard T, Fowler S. et al.  Impact of intensive lifestyle and metformin therapy on cardiovascular disease risk factors in the Diabetes Prevention Program. Diabetes Care. 2005; 28:888-94. PubMed
 
Gerstein HC, Yusuf S, Bosch J, Pogue J, Sheridan P, et al. DREAM Trial Investigators.  Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet. 2006; 368:1096-105. PubMed
 
Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P. et al.  Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001; 344:1343-50. PubMed
 
Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar AD, Vijay V. et al.  The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006; 49:289-97. PubMed
 
Watanabe M, Yamaoka K, Yokotsuka M, Tango T.  Randomized controlled trial of a new dietary education program to prevent type 2 diabetes in a high-risk group of Japanese male workers. Diabetes Care. 2003; 26:3209-14. PubMed
 
Swinburn BA, Metcalf PA, Ley SJ.  Long-term (5-year) effects of a reduced-fat diet intervention in individuals with glucose intolerance. Diabetes Care. 2001; 24:619-24. PubMed
 
Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX. et al.  Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997; 20:537-44. PubMed
 
Dyson PA, Hammersley MS, Morris RJ, Holman RR, Turner RC.  The Fasting Hyperglycaemia Study: II. Randomized controlled trial of reinforced healthy-living advice in subjects with increased but not diabetic fasting plasma glucose. Metabolism. 1997; 46:50-5. PubMed
 
Lindström J, Ilanne-Parikka P, Peltonen M, Aunola S, Eriksson JG, Hemiö K. et al.  Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet. 2006; 368:1673-9. PubMed
 
Torgerson JS, Hauptman J, Boldrin MN, Sjöström L.  XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care. 2004; 27:155-61. PubMed
 
Pan CY, Gao Y, Chen JW, Luo BY, Fu ZZ, Lu JM. et al.  Efficacy of acarbose in Chinese subjects with impaired glucose tolerance. Diabetes Res Clin Pract. 2003; 61:183-90. PubMed
 
Zinman B, Hoogwerf BJ, Durán García S, Milton DR, Giaconia JM, Kim DD. et al.  The effect of adding exenatide to a thiazolidinedione in suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med. 2007; 146:477-85. PubMed
 
Saaristo T, Peltonen M, Keinänen-Kiukaanniemi S, Vanhala M, Saltevo J, Niskanen L. et al.  National type 2 diabetes prevention programme in Finland: FIN-D2D. Int J Circumpolar Health. 2007; 66:101-12. PubMed
 
Eddy DM, Schlessinger L, Kahn R.  Clinical outcomes and cost-effectiveness of strategies for managing people at high risk for diabetes. Ann Intern Med. 2005; 143:251-64. PubMed
 
Eddy DM, Schlessinger L.  Archimedes: a trial-validated model of diabetes. Diabetes Care. 2003; 26:3093-101. PubMed
 
Eddy DM, Schlessinger L.  Validation of the archimedes diabetes model. Diabetes Care. 2003; 26:3102-10. PubMed
 
Herman WH, Hoerger TJ, Brandle M, Hicks K, Sorensen S, Zhang P. et al.  The cost-effectiveness of lifestyle modification or metformin in preventing type 2 diabetes in adults with impaired glucose tolerance. Ann Intern Med. 2005; 142:323-32. PubMed
 
Segal L, Dalton A, Richardson J.  Cost-effectiveness of the primary prevention of non-insulin dependent diabetes mellitus. Health Promot Int. 1998; 13:197-210.
 
Caro JJ, Getsios D, Caro I, Klittich WS, O'Brien JA.  Economic evaluation of therapeutic interventions to prevent type 2 diabetes in Canada. Diabet Med. 2004; 21:1229-36. PubMed
 
Palmer AJ, Roze S, Valentine WJ, Minshall ME, Hayes C, Oglesby A. et al.  Impact of changes in HbA1c, lipids and blood pressure on long-term outcomes in type 2 diabetes patients: an analysis using the CORE Diabetes Model. Curr Med Res Opin. 2004; 20:Suppl 1S53-8. PubMed
 
Lindgren P, Lindström J, Tuomilehto J, Uusitupa M, Peltonen M, Jönsson B. et al.  Lifestyle intervention to prevent diabetes in men and women with impaired glucose tolerance is cost-effective. Int J Technol Assess Health Care. 2007; 23:177-83. PubMed
 
Engelgau MM.  Trying to predict the future for people with diabetes: a tough but important task [Editorial]. Ann Intern Med. 2005; 143:301-2. PubMed
 
Haffner SM, Alexander CM, Cook TJ, Boccuzzi SJ, Musliner TA, Pedersen TR. et al.  Reduced coronary events in simvastatin-treated patients with coronary heart disease and diabetes or impaired fasting glucose levels: subgroup analyses in the Scandinavian Simvastatin Survival Study. Arch Intern Med. 1999; 159:2661-7. PubMed
 
Palmer AJ, Roze S, Valentine WJ, Spinas GA, Shaw JE, Zimmet PZ.  Intensive lifestyle changes or metformin in patients with impaired glucose tolerance: modeling the long-term health economic implications of the diabetes prevention program in Australia, France, Germany, Switzerland, and the United Kingdom. Clin Ther. 2004; 26:304-21. PubMed
 
Adriaanse MC, Dekker JM, Spijkerman AM, Twisk JW, Nijpels G, van der Ploeg HM. et al.  Diabetes-related symptoms and negative mood in participants of a targeted population-screening program for type 2 diabetes: The Hoorn Screening Study. Qual Life Res. 2005; 14:1501-9. PubMed
 
Adriaanse MC, Dekker JM, Spijkerman AM, Twisk JW, Nijpels G, van der Ploeg HM. et al.  Health-related quality of life in the first year following diagnosis of Type 2 diabetes: newly diagnosed patients in general practice compared with screening-detected patients. The Hoorn Screening Study. Diabet Med. 2004; 21:1075-81. PubMed
 
Adriaanse MC, Snoek FJ, Dekker JM, Spijkerman AM, Nijpels G, Twisk JW. et al.  No substantial psychological impact of the diagnosis of Type 2 diabetes following targeted population screening: The Hoorn Screening Study. Diabet Med. 2004; 21:992-8. PubMed
 
Adriaanse MC, Snoek FJ, Dekker JM, van der Ploeg HM, Heine RJ.  Screening for Type 2 diabetes: an exploration of subjects' perceptions regarding diagnosis and procedure. Diabet Med. 2002; 19:406-11. PubMed
 
Eborall H, Davies R, Kinmonth AL, Griffin S, Lawton J.  Patients' experiences of screening for type 2 diabetes: prospective qualitative study embedded in the ADDITION (Cambridge) randomised controlled trial. BMJ. 2007; 335:490. PubMed
 
Eborall HC, Griffin SJ, Prevost AT, Kinmonth AL, French DP, Sutton S.  Psychological impact of screening for type 2 diabetes: controlled trial and comparative study embedded in the ADDITION (Cambridge) randomised controlled trial. BMJ. 2007; 335:486. PubMed
 
Edelman D, Olsen MK, Dudley TK, Harris AC, Oddone EZ.  Impact of diabetes screening on quality of life. Diabetes Care. 2002; 25:1022-6. PubMed
 
Farmer AJ, Doll H, Levy JC, Salkovskis PM.  The impact of screening for Type 2 diabetes in siblings of patients with established diabetes. Diabet Med. 2003; 20:996-1004. PubMed
 
Farmer AJ, Doll HA.  In a randomized trial, outcomes were not affected by intensive follow-up over 1 year. J Clin Epidemiol. 2005; 58:991-6. PubMed
 
Nichols GA, Brown JB.  Functional status before and after diagnosis of type 2 diabetes. Diabet Med. 2004; 21:793-7. PubMed
 
Peel E, Parry O, Douglas M, Lawton J.  Diagnosis of type 2 diabetes: a qualitative analysis of patients' emotional reactions and views about information provision. Patient Educ Couns. 2004; 53:269-75. PubMed
 
Skinner TC, Davies MJ, Farooqi AM, Jarvis J, Tringham JR, Khunti K.  Diabetes screening anxiety and beliefs. Diabet Med. 2005; 22:1497-502. PubMed
 
Thoolen BJ, de Ridder DT, Bensing JM, Gorter KJ, Rutten GE.  Psychological outcomes of patients with screen-detected type 2 diabetes: the influence of time since diagnosis and treatment intensity. Diabetes Care. 2006; 29:2257-62. PubMed
 
Van de Laar FA, Lucassen PL, Akkermans RP, Van de Lisdonk EH, De Grauw WJ.  Alpha-glucosidase inhibitors for people with impaired glucose tolerance or impaired fasting blood glucose. Cochrane Database Syst Rev. 2006; CD005061. PubMed
 
van de Laar FA, Lucassen PL, Akkermans RP, van de Lisdonk EH, Rutten GE, van Weel C.  Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. Diabetes Care. 2005; 28:154-63. PubMed
 
Strippoli GF, Bonifati C, Craig M, Navaneethan SD, Craig JC.  Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists for preventing the progression of diabetic kidney disease. Cochrane Database Syst Rev. 2006; CD006257. PubMed
 
Strippoli GF, Craig M, Deeks JJ, Schena FP, Craig JC.  Effects of angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists on mortality and renal outcomes in diabetic nephropathy: systematic review. BMJ. 2004; 329:828. PubMed
 
McDonald MA, Simpson SH, Ezekowitz JA, Gyenes G, Tsuyuki RT.  Angiotensin receptor blockers and risk of myocardial infarction: systematic review. BMJ. 2005; 331:873. PubMed
 
Velázquez-Armenta EY, Han JY, Choi JS, Yang KM, Nava-Ocampo AA.  Angiotensin II receptor blockers in pregnancy: a case report and systematic review of the literature. Hypertens Pregnancy. 2007; 26:51-66. PubMed
 
Verdecchia P, Angeli F, Gattobigio R, Reboldi GP.  Do angiotensin II receptor blockers increase the risk of myocardial infarction? Eur Heart J. 2005; 26:2381-6. PubMed
 
McQuaid KR, Laine L.  Systematic review and meta-analysis of adverse events of low-dose aspirin and clopidogrel in randomized controlled trials. Am J Med. 2006; 119:624-38. PubMed
 
Berger JS, Roncaglioni MC, Avanzini F, Pangrazzi I, Tognoni G, Brown DL.  Aspirin for the primary prevention of cardiovascular events in women and men: a sex-specific meta-analysis of randomized controlled trials. JAMA. 2006; 295:306-13. PubMed
 
Wiysonge CS, Bradley H, Mayosi BM, Maroney R, Mbewu A, Opie LH. et al.  Beta-blockers for hypertension. Cochrane Database Syst Rev. 2007; CD002003. PubMed
 
Bolen S, Feldman L, Vassy J, Wilson L, Yeh HC, Marinopoulos S. et al.  Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann Intern Med. 2007; 147:386-99. PubMed
 
Gangji AS, Cukierman T, Gerstein HC, Goldsmith CH, Clase CM.  A systematic review and meta-analysis of hypoglycemia and cardiovascular events: a comparison of glyburide with other secretagogues and with insulin. Diabetes Care. 2007; 30:389-94. PubMed
 
Saenz A, Fernandez-Esteban I, Mataix A, Ausejo M, Roque M, Moher D.  Metformin monotherapy for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2005; CD002966. PubMed
 
Salpeter S, Greyber E, Pasternak G, Salpeter E.  Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev. 2006; CD002967. PubMed
 
Salpeter SR, Greyber E, Pasternak GA, Salpeter EE.  Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus: systematic review and meta-analysis. Arch Intern Med. 2003; 163:2594-602. PubMed
 
Setter SM, Iltz JL, Thams J, Campbell RK.  Metformin hydrochloride in the treatment of type 2 diabetes mellitus: a clinical review with a focus on dual therapy. Clin Ther. 2003; 25:2991-3026. PubMed
 
Bonovas S, Sitaras NM.  Does pravastatin promote cancer in elderly patients? A meta-analysis. CMAJ. 2007; 176:649-54. PubMed
 
McClure DL, Valuck RJ, Glanz M, Hokanson JE.  Systematic review and meta-analysis of clinically relevant adverse events from HMG CoA reductase inhibitor trials worldwide from 1982 to present. Pharmacoepidemiol Drug Saf. 2007; 16:132-43. PubMed
 
Law M, Rudnicka AR.  Statin safety: a systematic review. Am J Cardiol. 2006; 97:52C-60C. PubMed
 
Silva MA, Swanson AC, Gandhi PJ, Tataronis GR.  Statin-related adverse events: a meta-analysis. Clin Ther. 2006; 28:26-35. PubMed
 
Norris SL, Carson S, Roberts C.  Drug Class Review on Thiazolidinediones. Portland, OR: Oregon Health & Science University; May 2006. Assessed athttp://ohsu.edu/drugeffectiveness/reports/final.cfmon 8 April 2008.
 
Richter B, Bandeira-Echtler E, Bergerhoff K, Clar C, Ebrahim SH.  Rosiglitazone for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2007; CD006063. PubMed
 
Richter B, Bandeira-Echtler E, Bergerhoff K, Clar C, Ebrahim SH.  Pioglitazone for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2006; CD006060. PubMed
 
Singh S, Loke YK, Furberg CD.  Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA. 2007; 298:1189-95. PubMed
 
Norris SL, Zhang X, Avenell A, Gregg E, Schmid CH, Lau J.  Pharmacotherapy for weight loss in adults with type 2 diabetes mellitus. Cochrane Database Syst Rev. 2005; CD004096. PubMed
 
Li Z, Maglione M, Tu W, Mojica W, Arterburn D, Shugarman LR. et al.  Meta-analysis: pharmacologic treatment of obesity. Ann Intern Med. 2005; 142:532-46. PubMed
 
Nissen SE, Wolski K.  Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007; 356:2457-71. PubMed
 
Wright AD, Cull CA, Macleod KM, Holman RR, for the UKPDS Group.  Hypoglycemia in type 2 diabetic patients randomized to and maintained on monotherapy with diet, sulfonylurea, metformin, or insulin for 6 years from diagnosis: UKPDS73. J Diabetes Complications. 2006; 20:395-401. PubMed
 
Stern MP, Williams K, Haffner SM.  Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test? Ann Intern Med. 2002; 136:575-81. PubMed
 
Lorenzo C, Okoloise M, Williams K, Stern MP, Haffner SM, San Antonio Heart Study.  The metabolic syndrome as predictor of type 2 diabetes: the San Antonio heart study. Diabetes Care. 2003; 26:3153-9. PubMed
 
Lindström J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J. et al.  The Finnish Diabetes Prevention Study (DPS): lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care. 2003; 26:3230-6. PubMed
 
Wilson PW, Meigs JB, Sullivan L, Fox CS, Nathan DM, D'Agostino RB Sr.  Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch Intern Med. 2007; 167:1068-74. PubMed
 
Greaves CJ, Stead JW, Hattersley AT, Ewings P, Brown P, Evans PH.  A simple pragmatic system for detecting new cases of type 2 diabetes and impaired fasting glycaemia in primary care. Fam Pract. 2004; 21:57-62. PubMed
 
Schmidt MI, Duncan BB, Bang H, Pankow JS, Ballantyne CM, Golden SH. et al.  Identifying individuals at high risk for diabetes: the Atherosclerosis Risk in Communities study. Diabetes Care. 2005; 28:2013-8. PubMed
 
Diabetes Prevention Program Research Group.  Strategies to identify adults at high risk for type 2 diabetes: the Diabetes Prevention Program. Diabetes Care. 2005; 28:138-44. PubMed
 
UK Prospective Diabetes Study (UKPDS) Group.  Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998; 352:854-65. PubMed
 
Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Livingstone SJ. et al.  Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004; 364:685-96. PubMed
 
Stamler J, Vaccaro O, Neaton JD, Wentworth D.  Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993; 16:434-44. PubMed
 
Grimes DA, Schulz KF.  Uses and abuses of screening tests. Lancet. 2002; 359:881-4. PubMed
 
Kriska AM, Edelstein SL, Hamman RF, Otto A, Bray GA, Mayer-Davis EJ. et al.  Physical activity in individuals at risk for diabetes: Diabetes Prevention Program. Med Sci Sports Exerc. 2006; 38:826-32. PubMed
 
Dailey GE 3rd.  Early insulin: an important therapeutic strategy [Editorial]. Diabetes Care. 2005; 28:220-1. PubMed
 
The Diabetes Control and Complications Trial Research Group.  The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993; 329:977-86. PubMed
 
Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ. et al.  Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005; 353:2643-53. PubMed
 
Zhang P, Engelgau MM, Valdez R, Benjamin SM, Cadwell B, Narayan KM.  Costs of screening for pre-diabetes among US adults: a comparison of different screening strategies. Diabetes Care. 2003; 26:2536-42. PubMed
 
Barzilay JI, Jones CL, Davis BR, Basile JN, Goff DC Jr, Ciocon JO. et al.  Baseline characteristics of the diabetic participants in the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Diabetes Care. 2001; 24:654-8. PubMed
 
The Diabetes Prevention Program Research Group.  The Diabetes Prevention Program: baseline characteristics of the randomized cohort. Diabetes Care. 2000; 23:1619-29. PubMed
 
Fujimoto WY, Diabetes Prevention Program Research Group.  Background and recruitment data for the U.S. Diabetes Prevention Program. Diabetes Care. 2000; 23:SUPPL 2B11-3. PubMed
 
Gerstein HC, Yusuf S, Holman R, Bosch J, Pogue J, The DREAM Trial Investigators.  Rationale, design and recruitment characteristics of a large, simple international trial of diabetes prevention: the DREAM trial. Diabetologia. 2004; 47:1519-27. PubMed
 
Lindström J, Eriksson JG, Valle TT, Aunola S, Cepaitis Z, Hakumäki M. et al.  Prevention of diabetes mellitus in subjects with impaired glucose tolerance in the Finnish Diabetes Prevention Study: results from a randomized clinical trial. J Am Soc Nephrol. 2003; 14:S108-13. PubMed
 
Laaksonen DE, Lindström J, Lakka TA, Eriksson JG, Niskanen L, Wikström K. et al.  Physical activity in the prevention of type 2 diabetes: the Finnish diabetes prevention study. Diabetes. 2005; 54:158-65. PubMed
 
Eriksson J, Lindström J, Valle T, Aunola S, Hämäläinen H, Ilanne-Parikka P. et al.  Prevention of type II diabetes in subjects with impaired glucose tolerance: the Diabetes Prevention Study (DPS) in Finland. Study design and 1-year interim report on the feasibility of the lifestyle intervention programme. Diabetologia. 1999; 42:793-801. PubMed
 
Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. et al.  Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003; 290:486-94. PubMed
 
Chiasson JL, Gomis R, Hanefeld M, Josse RG, Karasik A, Laakso M.  The STOP-NIDDM Trial: an international study on the efficacy of an alpha-glucosidase inhibitor to prevent type 2 diabetes in a population with impaired glucose tolerance: rationale, design, and preliminary screening data. Study to Prevent Non-Insulin-Dependent Diabetes Mellitus. Diabetes Care. 1998; 21:1720-5. PubMed
 
Torgerson JS, Arlinger K, Käppi M, Sjöström L.  Principles for enhanced recruitment of subjects in a large clinical trial. the XENDOS (XENical in the prevention of Diabetes in Obese Subjects) study experience. Control Clin Trials. 2001; 22:515-25. PubMed
 

Figures

Grahic Jump Location
Appendix Figure 1.
Analytic framework.

KQ = key question.

Grahic Jump Location
Grahic Jump Location
Figure.
Study flow diagram.

KQ = key question. *Cochrane databases were the Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Database of Abstracts of Reviews of Effects. †Other sources were reference lists and expert referrals.

Grahic Jump Location
Grahic Jump Location
Appendix Figure 2.
Diabetes incidence in lifestyle trials.

DPP = Diabetes Prevention Program.

Grahic Jump Location
Grahic Jump Location
Appendix Figure 3.
Diabetes incidence in drug trials.

DPP = Diabetes Prevention Program; DREAM = Diabetes Reduction Assessment with Ramipril and Rosiglitazone Medication.

Grahic Jump Location

Tables

Table Jump PlaceholderAppendix Table 1.  Randomized, Controlled Trials of Hypertension Treatment in Diabetic Populations
Table Jump PlaceholderAppendix Table 2.  Randomized, Controlled Trials of Lipid Interventions in Diabetic and Nondiabetic Populations*
Table Jump PlaceholderAppendix Table 3.  Randomized, Controlled Trials of Interventions in Prediabetes
Table Jump PlaceholderTable 2.  Number Needed to Screen for Type 2 Diabetes to Prevent 1 Adverse Event after 5 Years of Additional Treatment
Table Jump PlaceholderTable 3.  Number Needed to Screen for Prediabetes to Prevent 1 Case of Diabetes after 3 Years

References

Cowie CC, Rust KF, Byrd-Holt DD, Eberhardt MS, Flegal KM, Engelgau MM. et al.  Prevalence of diabetes and impaired fasting glucose in adults in the U.S. population: National Health And Nutrition Examination Survey 1999-2002. Diabetes Care. 2006; 29:1263-8. PubMed
CrossRef
 
Harris MI, Flegal KM, Cowie CC, Eberhardt MS, Goldstein DE, Little RR. et al.  Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988-1994. Diabetes Care. 1998; 21:518-24. PubMed
 
Gregg EW, Cadwell BL, Cheng YJ, Cowie CC, Williams DE, Geiss L. et al.  Trends in the prevalence and ratio of diagnosed to undiagnosed diabetes according to obesity levels in the U.S. Diabetes Care. 2004; 27:2806-12. PubMed
 
Moss SE, Klein R, Klein BE.  Cause-specific mortality in a population-based study of diabetes. Am J Public Health. 1991; 81:1158-62. PubMed
 
Harris MI, Klein R, Welborn TA, Knuiman MW.  Onset of NIDDM occurs at least 4-7 yr before clinical diagnosis. Diabetes Care. 1992; 15:815-9. PubMed
 
Klein R, Klein BE, Moss SE, Davis MD, DeMets DL.  Glycosylated hemoglobin predicts the incidence and progression of diabetic retinopathy. JAMA. 1988; 260:2864-71. PubMed
 
Stratton IM, Kohner EM, Aldington SJ, Turner RC, Holman RR, Manley SE. et al.  UKPDS 50: risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis. Diabetologia. 2001; 44:156-63. PubMed
 
Younis N, Broadbent DM, Vora JP, Harding SP, Liverpool Diabetic Eye Study.  Incidence of sight-threatening retinopathy in patients with type 2 diabetes in the Liverpool Diabetic Eye Study: a cohort study. Lancet. 2003; 361:195-200. PubMed
 
Henricsson M, Tyrberg M, Heijl A, Janzon L.  Incidence of blindness and visual impairment in diabetic patients participating in an ophthalmological control and screening programme. Acta Ophthalmol Scand. 1996; 74:533-8. PubMed
 
Hu FB, Stampfer MJ, Haffner SM, Solomon CG, Willett WC, Manson JE.  Elevated risk of cardiovascular disease prior to clinical diagnosis of type 2 diabetes. Diabetes Care. 2002; 25:1129-34. PubMed
 
Coutinho M, Gerstein HC, Wang Y, Yusuf S.  The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care. 1999; 22:233-40. PubMed
 
Chowdhury TA, Lasker SS.  Complications and cardiovascular risk factors in South Asians and Europeans with early-onset type 2 diabetes. QJM. 2002; 95:241-6. PubMed
 
Pan WH, Cedres LB, Liu K, Dyer A, Schoenberger JA, Shekelle RB. et al.  Relationship of clinical diabetes and asymptomatic hyperglycemia to risk of coronary heart disease mortality in men and women. Am J Epidemiol. 1986; 123:504-16. PubMed
 
Haffner SM, Stern MP, Hazuda HP, Mitchell BD, Patterson JK.  Cardiovascular risk factors in confirmed prediabetic individuals. Does the clock for coronary heart disease start ticking before the onset of clinical diabetes? JAMA. 1990; 263:2893-8. PubMed
 
McPhillips JB, Barrett-Connor E, Wingard DL.  Cardiovascular disease risk factors prior to the diagnosis of impaired glucose tolerance and non-insulin-dependent diabetes mellitus in a community of older adults. Am J Epidemiol. 1990; 131:443-53. PubMed
 
Meigs JB, Nathan DM, Wilson PW, Cupples LA, Singer DE.  Metabolic risk factors worsen continuously across the spectrum of nondiabetic glucose tolerance. The Framingham Offspring Study. Ann Intern Med. 1998; 128:524-33. PubMed
 
Khaw KT, Wareham N, Luben R, Bingham S, Oakes S, Welch A. et al.  Glycated haemoglobin, diabetes, and mortality in men in Norfolk cohort of european prospective investigation of cancer and nutrition (EPIC-Norfolk). BMJ. 2001; 322:15-8. PubMed
 
Verdecchia P, Reboldi G, Angeli F, Borgioni C, Gattobigio R, Filippucci L. et al.  Adverse prognostic significance of new diabetes in treated hypertensive subjects. Hypertension. 2004; 43:963-9. PubMed
 
Niskanen L, Turpeinen A, Penttilä I, Uusitupa MI.  Hyperglycemia and compositional lipoprotein abnormalities as predictors of cardiovascular mortality in type 2 diabetes: a 15-year follow-up from the time of diagnosis. Diabetes Care. 1998; 21:1861-9. PubMed
 
Taubert G, Winkelmann BR, Schleiffer T, März W, Winkler R, Gök R. et al.  Prevalence, predictors, and consequences of unrecognized diabetes mellitus in 3266 patients scheduled for coronary angiography. Am Heart J. 2003; 145:285-91. PubMed
 
Vancheri F, Curcio M, Burgio A, Salvaggio S, Gruttadauria G, Lunetta MC. et al.  Impaired glucose metabolism in patients with acute stroke and no previous diagnosis of diabetes mellitus. QJM. 2005; 98:871-8. PubMed
 
Rathmann W, Icks A, Haastert B, Giani G, Löwel H, Mielck A.  Undiagnosed diabetes mellitus among patients with prior myocardial infarction. Z Kardiol. 2002; 91:620-5. PubMed
 
Norhammar A, Tenerz A, Nilsson G, Hamsten A, Efendíc S, Rydén L. et al.  Glucose metabolism in patients with acute myocardial infarction and no previous diagnosis of diabetes mellitus: a prospective study. Lancet. 2002; 359:2140-4. PubMed
 
Selvin E, Coresh J, Shahar E, Zhang L, Steffes M, Sharrett AR.  Glycaemia (haemoglobin A1c) and incident ischaemic stroke: the Atherosclerosis Risk in Communities (ARIC) Study. Lancet Neurol. 2005; 4:821-6. PubMed
 
Selvin E, Coresh J, Golden SH, Brancati FL, Folsom AR, Steffes MW.  Glycemic control and coronary heart disease risk in persons with and without diabetes: the atherosclerosis risk in communities study. Arch Intern Med. 2005; 165:1910-6. PubMed
 
Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR. et al.  Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004; 141:421-31. PubMed
 
Stettler C, Allemann S, Jüni P, Cull CA, Holman RR, Egger M. et al.  Glycemic control and macrovascular disease in types 1 and 2 diabetes mellitus: meta-analysis of randomized trials. Am Heart J. 2006; 152:27-38. PubMed
 
Harris MI.  Undiagnosed NIDDM: clinical and public health issues. Diabetes Care. 1993; 16:642-52. PubMed
 
Harris R, Donahue K, Rathore SS, Frame P, Woolf SH, Lohr KN.  Screening adults for type 2 diabetes: a review of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med. 2003; 138:215-29. PubMed
 
Harris RP, Lux LJ, Bunton AJ, Sutton SF, Lohr KN, Donahue KP, et al.  Screening for Type 2 Diabetes Mellitus. (Prepared by RTI International Evidence-based Practice Center under contract 290-97-0011 for the Agency for Healthcare Research and Quality.) Rockville, MD: U.S. Department of Health and Human Services; February 2003. Systematic Evidence Review no. 19.
 
U.S. Preventive Services Task Force.  Screening for type 2 diabetes mellitus in adults: recommendations and rationale. Ann Intern Med. 2003; 138:212-4. PubMed
 
Harris RP, Helfand M, Woolf SH, Lohr KN, Mulrow CD, Teutsch SM. et al.  Current methods of the US Preventive Services Task Force: a review of the process. Am J Prev Med. 2001; 20:21-35. PubMed
 
Oxman AD, Guyatt GH.  Validation of an index of the quality of review articles. J Clin Epidemiol. 1991; 44:1271-8. PubMed
 
National Institute for Health and Clinical Excellence.  The Guidelines Manual. London: National Institute for Health and Clinical Excellence; 2006.
 
Waugh N, Scotland G, McNamee P, Gillett M, Brennan A, Goyder E. et al.  Screening for type 2 diabetes: literature review and economic modelling. Health Technol Assess. 2007; 11:iii-iv, ix-xi, 1-125. PubMed
 
Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Diabetes Prevention Program Research Group.  Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002; 346:393-403. PubMed
 
Heymsfield SB, Segal KR, Hauptman J, Lucas CP, Boldrin MN, Rissanen A. et al.  Effects of weight loss with orlistat on glucose tolerance and progression to type 2 diabetes in obese adults. Arch Intern Med. 2000; 160:1321-6. PubMed
 
Kosaka K, Noda M, Kuzuya T.  Prevention of type 2 diabetes by lifestyle intervention: a Japanese trial in IGT males. Diabetes Res Clin Pract. 2005; 67:152-62. PubMed
 
DerSimonian R, Laird N.  Meta-analysis in clinical trials. Control Clin Trials. 1986; 7:177-88. PubMed
 
Schellhase KG, Koepsell TD, Weiss NS, Wagner EH, Reiber GE.  Glucose screening and the risk of complications in Type 2 diabetes mellitus. J Clin Epidemiol. 2003; 56:75-80. PubMed
 
Olafsdottir E, Andersson DK, Stefánsson E.  Visual acuity in a population with regular screening for type 2 diabetes mellitus and eye disease. Acta Ophthalmol Scand. 2007; 85:40-5. PubMed
 
Agarwal S, Raman R, Kumari RP, Deshmukh H, Paul PG, Gnanamoorthy P. et al.  Diabetic retinopathy in type II diabetics detected by targeted screening versus newly diagnosed in general practice. Ann Acad Med Singapore. 2006; 35:531-5. PubMed
 
CDC Diabetes Cost-Effectiveness Study Group, Centers for Disease Control and Prevention.  The cost-effectiveness of screening for type 2 diabetes. JAMA. 1998; 280:1757-63. PubMed
 
Goyder EC, Irwig LM.  Screening for type 2 diabetes mellitus: a decision analytic approach. Diabet Med. 2000; 17:469-77. PubMed
 
Hofer TP, Vijan S, Hayward RA.  Estimating the microvascular benefits of screening for type 2 diabetes mellitus. Int J Technol Assess Health Care. 2000; 16:822-33. PubMed
 
Chen TH, Yen MF, Tung TH.  A computer simulation model for cost-effectiveness analysis of mass screening for type 2 diabetes mellitus. Diabetes Res Clin Pract. 2001; 54:Suppl 1S37-42. PubMed
 
Hoerger TJ, Harris R, Hicks KA, Donahue K, Sorensen S, Engelgau M.  Screening for type 2 diabetes mellitus: a cost-effectiveness analysis. Ann Intern Med. 2004; 140:689-99. PubMed
 
Glümer C, Yuyun M, Griffin S, Farewell D, Spiegelhalter D, Kinmonth AL. et al.  What determines the cost-effectiveness of diabetes screening? Diabetologia. 2006; 49:1536-44. PubMed
 
Lauritzen T, Griffin S, Borch-Johnsen K, Wareham NJ, Wolffenbuttel BH, Rutten G. et al.  The ADDITION study: proposed trial of the cost-effectiveness of an intensive multifactorial intervention on morbidity and mortality among people with type 2 diabetes detected by screening. Int J Obes Relat Metab Disord. 2000; 24:Suppl 3S6-11. PubMed
 
The ALLHAT Officers.  Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT). JAMA. 2002; 288:2998-3007. PubMed
 
Whelton PK, Barzilay J, Cushman WC, Davis BR, Iiamathi E, Kostis JB. et al.  Clinical outcomes in antihypertensive treatment of type 2 diabetes, impaired fasting glucose concentration, and normoglycemia: Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch Intern Med. 2005; 165:1401-9. PubMed
 
Black HR, Elliott WJ, Grandits G, Grambsch P, Lucente T, White WB. et al.  Principal results of the Controlled Onset Verapamil Investigation of Cardiovascular End Points (CONVINCE) trial. JAMA. 2003; 289:2073-82. PubMed
 
Dahlöf B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U. et al.  Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002; 359:995-1003. PubMed
 
Lindholm LH, Ibsen H, Dahlöf B, Devereux RB, Beevers G, de Faire U. et al.  Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002; 359:1004-10. PubMed
 
Sever PS, Dahlöf B, Poulter NR, Wedel H, Beevers G, Caulfield M. et al.  Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet. 2003; 361:1149-58. PubMed
 
Sever PS, Poulter NR, Dahlöf B, Wedel H, Collins R, Beevers G. et al.  Reduction in cardiovascular events with atorvastatin in 2,532 patients with type 2 diabetes: Anglo-Scandinavian Cardiac Outcomes Trial—lipid-lowering arm (ASCOT-LLA). Diabetes Care. 2005; 28:1151-7. PubMed
 
Collins R, Armitage J, Parish S, Sleigh P, Peto R, Heart Protection Study Collaborative Group.  MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet. 2003; 361:2005-16. PubMed
 
Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM. et al.  Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet. 2002; 360:1623-30. PubMed
 
Sacco M, Pellegrini F, Roncaglioni MC, Avanzini F, Tognoni G, Nicolucci A. et al.  Primary prevention of cardiovascular events with low-dose aspirin and vitamin E in type 2 diabetic patients: results of the Primary Prevention Project (PPP) trial. Diabetes Care. 2003; 26:3264-72. PubMed
 
Ridker PM, Cook NR, Lee IM, Gordon D, Gaziano JM, Manson JE. et al.  A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. N Engl J Med. 2005; 352:1293-304. PubMed
 
Olivarius NF, Beck-Nielsen H, Andreasen AH, Hørder M, Pedersen PA.  Randomised controlled trial of structured personal care of type 2 diabetes mellitus. BMJ. 2001; 323:970-5. PubMed
 
UK Prospective Diabetes Study (UKPDS) Group.  Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998; 352:837-53. PubMed
 
Turnbull F, Neal B, Algert C, Chalmers J, Chapman N, Cutler J. et al.  Effects of different blood pressure-lowering regimens on major cardiovascular events in individuals with and without diabetes mellitus: results of prospectively designed overviews of randomized trials. Arch Intern Med. 2005; 165:1410-9. PubMed
 
Heart Outcomes Prevention Evaluation Study Investigators.  Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet. 2000; 355:253-9. PubMed
 
Bosch J, Lonn E, Pogue J, Arnold JM, Dagenais GR, Yusuf S. et al.  Long-term effects of ramipril on cardiovascular events and on diabetes: results of the HOPE study extension. Circulation. 2005; 112:1339-46. PubMed
 
Hansson L, Zanchetti A, Carruthers SG, Dahlöf B, Elmfeldt D, Julius S. et al.  Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet. 1998; 351:1755-62. PubMed
 
Action to control cardiovascular risk in diabetes (ACCORD) [clinical trial]. ClinicalTrials.gov identifier: NCT00000620. Accessed athttp://www.clinicaltrials.gov/ct2/show/NCT00000620?term=NCT00000620&rank=1on 8 April 2008.
 
Costa J, Borges M, David C, Vaz Carneiro A.  Efficacy of lipid lowering drug treatment for diabetic and non-diabetic patients: meta-analysis of randomised controlled trials. BMJ. 2006; 332:1115-24. PubMed
 
Antithrombotic Trialists' Collaboration.  Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002; 324:71-86. PubMed
 
.  Early Treatment Diabetic Retinopathy Study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology. 1991; 98:741-56. PubMed
 
Steering Committee of the Physicians' Health Study Research Group.  Final report on the aspirin component of the ongoing Physicians' Health Study. N Engl J Med. 1989; 321:129-35. PubMed
 
Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. et al.  Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002; 359:2072-7. PubMed
 
Bosch J, Yusuf S, Gerstein HC, Pogue J, Sheridan P, et al. DREAM Trial Investigators.  Effect of ramipril on the incidence of diabetes. N Engl J Med. 2006; 355:1551-62. PubMed
 
Ratner R, Goldberg R, Haffner S, Marcovina S, Orchard T, Fowler S. et al.  Impact of intensive lifestyle and metformin therapy on cardiovascular disease risk factors in the Diabetes Prevention Program. Diabetes Care. 2005; 28:888-94. PubMed
 
Gerstein HC, Yusuf S, Bosch J, Pogue J, Sheridan P, et al. DREAM Trial Investigators.  Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet. 2006; 368:1096-105. PubMed
 
Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P. et al.  Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001; 344:1343-50. PubMed
 
Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar AD, Vijay V. et al.  The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006; 49:289-97. PubMed
 
Watanabe M, Yamaoka K, Yokotsuka M, Tango T.  Randomized controlled trial of a new dietary education program to prevent type 2 diabetes in a high-risk group of Japanese male workers. Diabetes Care. 2003; 26:3209-14. PubMed
 
Swinburn BA, Metcalf PA, Ley SJ.  Long-term (5-year) effects of a reduced-fat diet intervention in individuals with glucose intolerance. Diabetes Care. 2001; 24:619-24. PubMed
 
Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX. et al.  Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997; 20:537-44. PubMed
 
Dyson PA, Hammersley MS, Morris RJ, Holman RR, Turner RC.  The Fasting Hyperglycaemia Study: II. Randomized controlled trial of reinforced healthy-living advice in subjects with increased but not diabetic fasting plasma glucose. Metabolism. 1997; 46:50-5. PubMed
 
Lindström J, Ilanne-Parikka P, Peltonen M, Aunola S, Eriksson JG, Hemiö K. et al.  Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet. 2006; 368:1673-9. PubMed
 
Torgerson JS, Hauptman J, Boldrin MN, Sjöström L.  XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care. 2004; 27:155-61. PubMed
 
Pan CY, Gao Y, Chen JW, Luo BY, Fu ZZ, Lu JM. et al.  Efficacy of acarbose in Chinese subjects with impaired glucose tolerance. Diabetes Res Clin Pract. 2003; 61:183-90. PubMed
 
Zinman B, Hoogwerf BJ, Durán García S, Milton DR, Giaconia JM, Kim DD. et al.  The effect of adding exenatide to a thiazolidinedione in suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med. 2007; 146:477-85. PubMed
 
Saaristo T, Peltonen M, Keinänen-Kiukaanniemi S, Vanhala M, Saltevo J, Niskanen L. et al.  National type 2 diabetes prevention programme in Finland: FIN-D2D. Int J Circumpolar Health. 2007; 66:101-12. PubMed
 
Eddy DM, Schlessinger L, Kahn R.  Clinical outcomes and cost-effectiveness of strategies for managing people at high risk for diabetes. Ann Intern Med. 2005; 143:251-64. PubMed
 
Eddy DM, Schlessinger L.  Archimedes: a trial-validated model of diabetes. Diabetes Care. 2003; 26:3093-101. PubMed
 
Eddy DM, Schlessinger L.  Validation of the archimedes diabetes model. Diabetes Care. 2003; 26:3102-10. PubMed
 
Herman WH, Hoerger TJ, Brandle M, Hicks K, Sorensen S, Zhang P. et al.  The cost-effectiveness of lifestyle modification or metformin in preventing type 2 diabetes in adults with impaired glucose tolerance. Ann Intern Med. 2005; 142:323-32. PubMed
 
Segal L, Dalton A, Richardson J.  Cost-effectiveness of the primary prevention of non-insulin dependent diabetes mellitus. Health Promot Int. 1998; 13:197-210.
 
Caro JJ, Getsios D, Caro I, Klittich WS, O'Brien JA.  Economic evaluation of therapeutic interventions to prevent type 2 diabetes in Canada. Diabet Med. 2004; 21:1229-36. PubMed
 
Palmer AJ, Roze S, Valentine WJ, Minshall ME, Hayes C, Oglesby A. et al.  Impact of changes in HbA1c, lipids and blood pressure on long-term outcomes in type 2 diabetes patients: an analysis using the CORE Diabetes Model. Curr Med Res Opin. 2004; 20:Suppl 1S53-8. PubMed
 
Lindgren P, Lindström J, Tuomilehto J, Uusitupa M, Peltonen M, Jönsson B. et al.  Lifestyle intervention to prevent diabetes in men and women with impaired glucose tolerance is cost-effective. Int J Technol Assess Health Care. 2007; 23:177-83. PubMed
 
Engelgau MM.  Trying to predict the future for people with diabetes: a tough but important task [Editorial]. Ann Intern Med. 2005; 143:301-2. PubMed
 
Haffner SM, Alexander CM, Cook TJ, Boccuzzi SJ, Musliner TA, Pedersen TR. et al.  Reduced coronary events in simvastatin-treated patients with coronary heart disease and diabetes or impaired fasting glucose levels: subgroup analyses in the Scandinavian Simvastatin Survival Study. Arch Intern Med. 1999; 159:2661-7. PubMed
 
Palmer AJ, Roze S, Valentine WJ, Spinas GA, Shaw JE, Zimmet PZ.  Intensive lifestyle changes or metformin in patients with impaired glucose tolerance: modeling the long-term health economic implications of the diabetes prevention program in Australia, France, Germany, Switzerland, and the United Kingdom. Clin Ther. 2004; 26:304-21. PubMed
 
Adriaanse MC, Dekker JM, Spijkerman AM, Twisk JW, Nijpels G, van der Ploeg HM. et al.  Diabetes-related symptoms and negative mood in participants of a targeted population-screening program for type 2 diabetes: The Hoorn Screening Study. Qual Life Res. 2005; 14:1501-9. PubMed
 
Adriaanse MC, Dekker JM, Spijkerman AM, Twisk JW, Nijpels G, van der Ploeg HM. et al.  Health-related quality of life in the first year following diagnosis of Type 2 diabetes: newly diagnosed patients in general practice compared with screening-detected patients. The Hoorn Screening Study. Diabet Med. 2004; 21:1075-81. PubMed
 
Adriaanse MC, Snoek FJ, Dekker JM, Spijkerman AM, Nijpels G, Twisk JW. et al.  No substantial psychological impact of the diagnosis of Type 2 diabetes following targeted population screening: The Hoorn Screening Study. Diabet Med. 2004; 21:992-8. PubMed
 
Adriaanse MC, Snoek FJ, Dekker JM, van der Ploeg HM, Heine RJ.  Screening for Type 2 diabetes: an exploration of subjects' perceptions regarding diagnosis and procedure. Diabet Med. 2002; 19:406-11. PubMed
 
Eborall H, Davies R, Kinmonth AL, Griffin S, Lawton J.  Patients' experiences of screening for type 2 diabetes: prospective qualitative study embedded in the ADDITION (Cambridge) randomised controlled trial. BMJ. 2007; 335:490. PubMed
 
Eborall HC, Griffin SJ, Prevost AT, Kinmonth AL, French DP, Sutton S.  Psychological impact of screening for type 2 diabetes: controlled trial and comparative study embedded in the ADDITION (Cambridge) randomised controlled trial. BMJ. 2007; 335:486. PubMed
 
Edelman D, Olsen MK, Dudley TK, Harris AC, Oddone EZ.  Impact of diabetes screening on quality of life. Diabetes Care. 2002; 25:1022-6. PubMed
 
Farmer AJ, Doll H, Levy JC, Salkovskis PM.  The impact of screening for Type 2 diabetes in siblings of patients with established diabetes. Diabet Med. 2003; 20:996-1004. PubMed
 
Farmer AJ, Doll HA.  In a randomized trial, outcomes were not affected by intensive follow-up over 1 year. J Clin Epidemiol. 2005; 58:991-6. PubMed
 
Nichols GA, Brown JB.  Functional status before and after diagnosis of type 2 diabetes. Diabet Med. 2004; 21:793-7. PubMed
 
Peel E, Parry O, Douglas M, Lawton J.  Diagnosis of type 2 diabetes: a qualitative analysis of patients' emotional reactions and views about information provision. Patient Educ Couns. 2004; 53:269-75. PubMed
 
Skinner TC, Davies MJ, Farooqi AM, Jarvis J, Tringham JR, Khunti K.  Diabetes screening anxiety and beliefs. Diabet Med. 2005; 22:1497-502. PubMed
 
Thoolen BJ, de Ridder DT, Bensing JM, Gorter KJ, Rutten GE.  Psychological outcomes of patients with screen-detected type 2 diabetes: the influence of time since diagnosis and treatment intensity. Diabetes Care. 2006; 29:2257-62. PubMed
 
Van de Laar FA, Lucassen PL, Akkermans RP, Van de Lisdonk EH, De Grauw WJ.  Alpha-glucosidase inhibitors for people with impaired glucose tolerance or impaired fasting blood glucose. Cochrane Database Syst Rev. 2006; CD005061. PubMed
 
van de Laar FA, Lucassen PL, Akkermans RP, van de Lisdonk EH, Rutten GE, van Weel C.  Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. Diabetes Care. 2005; 28:154-63. PubMed
 
Strippoli GF, Bonifati C, Craig M, Navaneethan SD, Craig JC.  Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists for preventing the progression of diabetic kidney disease. Cochrane Database Syst Rev. 2006; CD006257. PubMed
 
Strippoli GF, Craig M, Deeks JJ, Schena FP, Craig JC.  Effects of angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists on mortality and renal outcomes in diabetic nephropathy: systematic review. BMJ. 2004; 329:828. PubMed
 
McDonald MA, Simpson SH, Ezekowitz JA, Gyenes G, Tsuyuki RT.  Angiotensin receptor blockers and risk of myocardial infarction: systematic review. BMJ. 2005; 331:873. PubMed
 
Velázquez-Armenta EY, Han JY, Choi JS, Yang KM, Nava-Ocampo AA.  Angiotensin II receptor blockers in pregnancy: a case report and systematic review of the literature. Hypertens Pregnancy. 2007; 26:51-66. PubMed
 
Verdecchia P, Angeli F, Gattobigio R, Reboldi GP.  Do angiotensin II receptor blockers increase the risk of myocardial infarction? Eur Heart J. 2005; 26:2381-6. PubMed
 
McQuaid KR, Laine L.  Systematic review and meta-analysis of adverse events of low-dose aspirin and clopidogrel in randomized controlled trials. Am J Med. 2006; 119:624-38. PubMed
 
Berger JS, Roncaglioni MC, Avanzini F, Pangrazzi I, Tognoni G, Brown DL.  Aspirin for the primary prevention of cardiovascular events in women and men: a sex-specific meta-analysis of randomized controlled trials. JAMA. 2006; 295:306-13. PubMed
 
Wiysonge CS, Bradley H, Mayosi BM, Maroney R, Mbewu A, Opie LH. et al.  Beta-blockers for hypertension. Cochrane Database Syst Rev. 2007; CD002003. PubMed
 
Bolen S, Feldman L, Vassy J, Wilson L, Yeh HC, Marinopoulos S. et al.  Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann Intern Med. 2007; 147:386-99. PubMed
 
Gangji AS, Cukierman T, Gerstein HC, Goldsmith CH, Clase CM.  A systematic review and meta-analysis of hypoglycemia and cardiovascular events: a comparison of glyburide with other secretagogues and with insulin. Diabetes Care. 2007; 30:389-94. PubMed
 
Saenz A, Fernandez-Esteban I, Mataix A, Ausejo M, Roque M, Moher D.  Metformin monotherapy for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2005; CD002966. PubMed
 
Salpeter S, Greyber E, Pasternak G, Salpeter E.  Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev. 2006; CD002967. PubMed
 
Salpeter SR, Greyber E, Pasternak GA, Salpeter EE.  Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus: systematic review and meta-analysis. Arch Intern Med. 2003; 163:2594-602. PubMed
 
Setter SM, Iltz JL, Thams J, Campbell RK.  Metformin hydrochloride in the treatment of type 2 diabetes mellitus: a clinical review with a focus on dual therapy. Clin Ther. 2003; 25:2991-3026. PubMed
 
Bonovas S, Sitaras NM.  Does pravastatin promote cancer in elderly patients? A meta-analysis. CMAJ. 2007; 176:649-54. PubMed
 
McClure DL, Valuck RJ, Glanz M, Hokanson JE.  Systematic review and meta-analysis of clinically relevant adverse events from HMG CoA reductase inhibitor trials worldwide from 1982 to present. Pharmacoepidemiol Drug Saf. 2007; 16:132-43. PubMed
 
Law M, Rudnicka AR.  Statin safety: a systematic review. Am J Cardiol. 2006; 97:52C-60C. PubMed
 
Silva MA, Swanson AC, Gandhi PJ, Tataronis GR.  Statin-related adverse events: a meta-analysis. Clin Ther. 2006; 28:26-35. PubMed
 
Norris SL, Carson S, Roberts C.  Drug Class Review on Thiazolidinediones. Portland, OR: Oregon Health & Science University; May 2006. Assessed athttp://ohsu.edu/drugeffectiveness/reports/final.cfmon 8 April 2008.
 
Richter B, Bandeira-Echtler E, Bergerhoff K, Clar C, Ebrahim SH.  Rosiglitazone for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2007; CD006063. PubMed
 
Richter B, Bandeira-Echtler E, Bergerhoff K, Clar C, Ebrahim SH.  Pioglitazone for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2006; CD006060. PubMed
 
Singh S, Loke YK, Furberg CD.  Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA. 2007; 298:1189-95. PubMed
 
Norris SL, Zhang X, Avenell A, Gregg E, Schmid CH, Lau J.  Pharmacotherapy for weight loss in adults with type 2 diabetes mellitus. Cochrane Database Syst Rev. 2005; CD004096. PubMed
 
Li Z, Maglione M, Tu W, Mojica W, Arterburn D, Shugarman LR. et al.  Meta-analysis: pharmacologic treatment of obesity. Ann Intern Med. 2005; 142:532-46. PubMed
 
Nissen SE, Wolski K.  Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007; 356:2457-71. PubMed
 
Wright AD, Cull CA, Macleod KM, Holman RR, for the UKPDS Group.  Hypoglycemia in type 2 diabetic patients randomized to and maintained on monotherapy with diet, sulfonylurea, metformin, or insulin for 6 years from diagnosis: UKPDS73. J Diabetes Complications. 2006; 20:395-401. PubMed
 
Stern MP, Williams K, Haffner SM.  Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test? Ann Intern Med. 2002; 136:575-81. PubMed
 
Lorenzo C, Okoloise M, Williams K, Stern MP, Haffner SM, San Antonio Heart Study.  The metabolic syndrome as predictor of type 2 diabetes: the San Antonio heart study. Diabetes Care. 2003; 26:3153-9. PubMed
 
Lindström J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J. et al.  The Finnish Diabetes Prevention Study (DPS): lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care. 2003; 26:3230-6. PubMed
 
Wilson PW, Meigs JB, Sullivan L, Fox CS, Nathan DM, D'Agostino RB Sr.  Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch Intern Med. 2007; 167:1068-74. PubMed
 
Greaves CJ, Stead JW, Hattersley AT, Ewings P, Brown P, Evans PH.  A simple pragmatic system for detecting new cases of type 2 diabetes and impaired fasting glycaemia in primary care. Fam Pract. 2004; 21:57-62. PubMed
 
Schmidt MI, Duncan BB, Bang H, Pankow JS, Ballantyne CM, Golden SH. et al.  Identifying individuals at high risk for diabetes: the Atherosclerosis Risk in Communities study. Diabetes Care. 2005; 28:2013-8. PubMed
 
Diabetes Prevention Program Research Group.  Strategies to identify adults at high risk for type 2 diabetes: the Diabetes Prevention Program. Diabetes Care. 2005; 28:138-44. PubMed
 
UK Prospective Diabetes Study (UKPDS) Group.  Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998; 352:854-65. PubMed
 
Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Livingstone SJ. et al.  Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004; 364:685-96. PubMed
 
Stamler J, Vaccaro O, Neaton JD, Wentworth D.  Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993; 16:434-44. PubMed
 
Grimes DA, Schulz KF.  Uses and abuses of screening tests. Lancet. 2002; 359:881-4. PubMed
 
Kriska AM, Edelstein SL, Hamman RF, Otto A, Bray GA, Mayer-Davis EJ. et al.  Physical activity in individuals at risk for diabetes: Diabetes Prevention Program. Med Sci Sports Exerc. 2006; 38:826-32. PubMed
 
Dailey GE 3rd.  Early insulin: an important therapeutic strategy [Editorial]. Diabetes Care. 2005; 28:220-1. PubMed
 
The Diabetes Control and Complications Trial Research Group.  The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993; 329:977-86. PubMed
 
Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ. et al.  Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005; 353:2643-53. PubMed
 
Zhang P, Engelgau MM, Valdez R, Benjamin SM, Cadwell B, Narayan KM.  Costs of screening for pre-diabetes among US adults: a comparison of different screening strategies. Diabetes Care. 2003; 26:2536-42. PubMed
 
Barzilay JI, Jones CL, Davis BR, Basile JN, Goff DC Jr, Ciocon JO. et al.  Baseline characteristics of the diabetic participants in the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Diabetes Care. 2001; 24:654-8. PubMed
 
The Diabetes Prevention Program Research Group.  The Diabetes Prevention Program: baseline characteristics of the randomized cohort. Diabetes Care. 2000; 23:1619-29. PubMed
 
Fujimoto WY, Diabetes Prevention Program Research Group.  Background and recruitment data for the U.S. Diabetes Prevention Program. Diabetes Care. 2000; 23:SUPPL 2B11-3. PubMed
 
Gerstein HC, Yusuf S, Holman R, Bosch J, Pogue J, The DREAM Trial Investigators.  Rationale, design and recruitment characteristics of a large, simple international trial of diabetes prevention: the DREAM trial. Diabetologia. 2004; 47:1519-27. PubMed
 
Lindström J, Eriksson JG, Valle TT, Aunola S, Cepaitis Z, Hakumäki M. et al.  Prevention of diabetes mellitus in subjects with impaired glucose tolerance in the Finnish Diabetes Prevention Study: results from a randomized clinical trial. J Am Soc Nephrol. 2003; 14:S108-13. PubMed
 
Laaksonen DE, Lindström J, Lakka TA, Eriksson JG, Niskanen L, Wikström K. et al.  Physical activity in the prevention of type 2 diabetes: the Finnish diabetes prevention study. Diabetes. 2005; 54:158-65. PubMed
 
Eriksson J, Lindström J, Valle T, Aunola S, Hämäläinen H, Ilanne-Parikka P. et al.  Prevention of type II diabetes in subjects with impaired glucose tolerance: the Diabetes Prevention Study (DPS) in Finland. Study design and 1-year interim report on the feasibility of the lifestyle intervention programme. Diabetologia. 1999; 42:793-801. PubMed
 
Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. et al.  Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003; 290:486-94. PubMed
 
Chiasson JL, Gomis R, Hanefeld M, Josse RG, Karasik A, Laakso M.  The STOP-NIDDM Trial: an international study on the efficacy of an alpha-glucosidase inhibitor to prevent type 2 diabetes in a population with impaired glucose tolerance: rationale, design, and preliminary screening data. Study to Prevent Non-Insulin-Dependent Diabetes Mellitus. Diabetes Care. 1998; 21:1720-5. PubMed
 
Torgerson JS, Arlinger K, Käppi M, Sjöström L.  Principles for enhanced recruitment of subjects in a large clinical trial. the XENDOS (XENical in the prevention of Diabetes in Obese Subjects) study experience. Control Clin Trials. 2001; 22:515-25. PubMed
 

Letters

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Comments

Submit a Comment
Submit a Comment

Supplements

Supplemental Content
Recommendation Summary

Summary for Patients

Screening for Type 2 Diabetes in Adults: U.S. Preventive Services Task Force Recommendations

The summary below is from the full reports titled “Screening for Type 2 Diabetes Mellitus in Adults: U.S. Preventive Services Task Force Recommendation Statement” and “ Screening Adults for Type 2 Diabetes: A Review of the Evidence for the U.S. Preventive Services Task Force.” They are in the 3 June issue of Annals of Internal Medicine (volume 148, pages 846-854 and pages 855-868). The first report was written by the U.S. Preventive Services Task Force; the second report was written by S.L. Norris, D. Kansagara, C. Bougatsos, and R. Fu.

Read More...

Clinical Slide Sets

Terms of Use

The In the Clinic® slide sets are owned and copyrighted by the American College of Physicians (ACP). All text, graphics, trademarks, and other intellectual property incorporated into the slide sets remain the sole and exclusive property of the ACP. The slide sets may be used only by the person who downloads or purchases them and only for the purpose of presenting them during not-for-profit educational activities. Users may incorporate the entire slide set or selected individual slides into their own teaching presentations but may not alter the content of the slides in any way or remove the ACP copyright notice. Users may make print copies for use as hand-outs for the audience the user is personally addressing but may not otherwise reproduce or distribute the slides by any means or media, including but not limited to sending them as e-mail attachments, posting them on Internet or Intranet sites, publishing them in meeting proceedings, or making them available for sale or distribution in any unauthorized form, without the express written permission of the ACP. Unauthorized use of the In the Clinic slide sets will constitute copyright infringement.

Toolkit

Want to Subscribe?

Learn more about subscription options

Advertisement
Related Articles
Related Point of Care
Topic Collections
PubMed Articles
Forgot your password?
Enter your username and email address. We'll send you a reminder to the email address on record.
(Required)
(Required)