0
Clinical Guidelines |

Behavioral Counseling to Prevent Skin Cancer: A Systematic Review for the U.S. Preventive Services Task Force FREE

Jennifer S. Lin, MD, MCR; Michelle Eder, PhD; and Sheila Weinmann, PhD, MPH
[+] Article and Author Information

From Kaiser Permanente Northwest, Portland, Oregon.


Acknowledgment: The authors thank Daphne Plaut, MLS, for conducting the literature searches; Kevin Lutz, MFA, for his editorial support; Sarah Zuber, MSW, and Tracy Beil, MS, for their assistance in conducting the evidence review; and Evelyn Whitlock, MD, MPH, for her guidance. The authors also thank the Agency for Healthcare Research and Quality and the U.S. Preventive Services Task Force, as well as the expert reviewers for their contribution to this evidence review.

Grant Support: By the Oregon Evidence-based Practice Center under contract to the Agency for Healthcare Research and Quality (contract HHS-290-2007-10057-I, task order 3).

Potential Conflicts of Interest: Disclosures can be viewed at www.acponline.org/authors/icmje/ConflictOfInterestForms.do?msNum=M09-2850.

Requests for Single Reprints: Jennifer S. Lin, MD, MCR, Center for Health Research, Kaiser Permanente Northwest, 3800 North Interstate Avenue, Portland, OR 97227; e-mail, jennifer.s.lin@kpchr.org.

Current Author Addresses: Drs. Lin, Eder, and Weinmann: Center for Health Research, Kaiser Permanente Northwest, 3800 North Interstate Avenue, Portland, OR 97227.

Author Contributions: Conception and design: J.S. Lin, M. Eder.

Analysis and interpretation of the data: J.S. Lin, M. Eder, S. Weinmann.

Drafting of the article: J.S. Lin, S. Weinmann.

Critical revision of the article for important intellectual content: J.S. Lin, S. Weinmann.

Final approval of the article: J.S. Lin, S. Weinmann.

Administrative, technical, or logistic support: M. Eder.

Collection and assembly of data: J.S. Lin, M. Eder, S. Weinmann.


Ann Intern Med. 2011;154(3):190-201. doi:10.7326/0003-4819-154-3-201102010-00009
Text Size: A A A

Background: More than 2 million cases of skin cancer are diagnosed annually in the United States, and melanoma incidence is increasing.

Purpose: To assist the U.S. Preventive Services Task Force in updating its 2003 recommendation on behavioral counseling to prevent skin cancer.

Data Sources: Existing systematic reviews, database searches through February 2010, and outside experts.

Study Selection: English-language, primary care–relevant counseling trials to promote sun-protective behaviors and studies examining the association between sun-protective behaviors and skin cancer outcomes or potential adverse effects were included.

Data Extraction: Each study was appraised by using design-specific quality criteria. Important study details were abstracted into evidence tables.

Data Synthesis: 11 fair- or good-quality, randomized, controlled trials examined the counseling interventions' effect on sun-protective behaviors. In young women, appearance-focused behavioral interventions decrease indoor tanning and ultraviolet exposure. In young adolescents, computer support can decrease midday sun exposure and increase sunscreen use. Thirty-five mainly fair-quality observational studies examined the relationship between ultraviolet exposure or sunscreen use and skin cancer. Increasing intermittent sun exposure in childhood is associated with an increased risk for squamous cell carcinoma, basal cell carcinoma, and melanoma. Evidence suggests that regular or early use of indoor tanning may increase melanoma risk. On the basis of 1 fair-quality trial, regular sunscreen use can prevent squamous cell carcinoma, but it is yet unclear if it can prevent basal cell carcinoma or melanoma.

Limitations: There are limited rigorous counseling trials. Observational studies are limited by the complexity of measuring ultraviolet exposure and sunscreen use, and inadequate adjustment for important confounders.

Conclusion: Randomized, controlled trials suggest that primary care–relevant counseling can increase sun-protective behaviors and decrease indoor tanning.

Primary Funding Source: Agency for Healthcare Research and Quality.

Editor's Note: As part of the U.S. Preventive Services Task Force's (USPSTF) ongoing commitment to clarity about its work and methods, the USPSTF is inviting public comment on all draft recommendation statements. The USPSTF's draft recommendation statement on behavioral counseling to prevent skin cancer will soon be available for public comment atwww.uspreventiveservicestaskforce.org/tfcomment.htm. As a result, the recommendation on behavioral counseling to prevent skin cancer does not appear with this accompanying background review. Once finalized, the recommendation statement will reflect any changes made based on the public comments received. A summary of these changes will be included in a new section of the final recommendation statement.

In the United States, more than 2 million cases of nonmelanoma skin cancer are diagnosed each year. Of these cases, about two thirds are basal cell carcinoma and one quarter are squamous cell carcinoma (1). Although melanoma is considerably less common than basal cell or squamous cell carcinoma, it now accounts for about 75% of skin cancer deaths (1). Age-adjusted incidence rates for melanoma among white Americans have increased from approximately 8.7 per 100 000 in 1975 to 25.3 per 100 000 in 2007 (2). Several factors may contribute to this increase in incidence, including increased ultraviolet exposure, increased public awareness of the warning signs of melanoma, and increased screening by clinicians (35).

Skin cancer has well-known host and environmental risk factors. Several phenotypic characteristics are associated with skin cancer risk, including hair and eye color, freckles, and tendency to sunburn (67). Exposure to solar ultraviolet radiation is the most important environmental risk factor for all types of skin cancer (8). Therefore, the primary strategies for preventing skin cancer include limiting ultraviolet exposure by avoiding midday sun, wearing protective clothing and broad-brimmed hats, applying sunscreen, and avoiding indoor tanning (7). However, sun-protective counseling in primary care varies in frequency and content (911), despite data suggesting that these behaviors need to be improved (12). Among adolescents in the United States, for example, about 83% reported at least 1 sunburn during the previous summer, only 34% reported sunscreen use, and nearly 10% of adolescents and 20% of young adults reported indoor tanning during the previous year (1314).

In 2003, the U.S. Preventive Services Task Force (USPSTF) concluded that evidence was insufficient to recommend for or against routine counseling by primary care clinicians to prevent skin cancer because of the uncertainty surrounding whether clinician counseling is effective in changing patient behaviors to reduce skin cancer, the uncertainty about potential harms of sun-protective behaviors, and availability of only fair-quality evidence linking sunscreen use or indoor tanning to skin cancer outcomes (15). Therefore, using the USPSTF methods (16), we developed an analytic framework with 5 key questions focusing on the evidence gaps identified in 2003 (Appendix Figure 1).

Grahic Jump Location
Appendix Figure 1.
Analytic framework and key questions.

BCC = basal cell carcinoma; KQ = key question; SCC = squamous cell carcinoma.

Grahic Jump Location

Key question 1: Is there direct evidence that counseling patients on sun-protective behaviors reduces sunburns, nevi, actinic keratoses, or skin cancer?

Key question 2: Do primary care–relevant counseling interventions change sun-protective behaviors?

Key question 3: Do primary care–relevant counseling interventions have adverse effects?

Key question 4: Are certain behaviors (for example, changes in sun exposure, indoor tanning, or sunscreen use) associated with skin cancer outcomes?

Key question 5: Are sun-protective behaviors associated with adverse effects?

Data Sources and Searches

We initially searched for existing systematic reviews from 2001 to March 2008 and evaluated 15 relevant systematic reviews, in addition to the previous evidence report, for quality and their potential in answering questions or identifying primary research for each question (15, 1731). We used 10 reviews to identify primary evidence and subsequently searched from the end dates of existing systematic reviews through February 2010 (Table 1) (15, 1718, 21, 23, 3236). Details of the existing systematic reviews search are included in the full report (37). We identified 6132 abstracts through MEDLINE and the Cochrane Central Register of Controlled Trials and 165 articles from outside experts and reviewing bibliographies of other relevant articles and existing systematic reviews (Appendix Figure 2).

Table Jump PlaceholderTable 1.  Search Strategies for Each Question Based on Existing Systematic Reviews
Grahic Jump Location
Appendix Figure 2.
Summary of evidence search and selection.
Grahic Jump Location
Study Selection

We reviewed all abstracts and articles for potential inclusion on the basis of a priori–determined inclusion criteria (Appendix Table 1). For key questions 1 to 3, we included randomized or controlled clinical trials evaluating behavioral interventions that were conducted in primary care settings, judged to be feasible for delivery in primary care (for example, mailed or electronic interventions) or widely available for referral from primary care. Outcomes for key question 2 included self-reported or directly observed measures of sun-protective behaviors (for example, limitation or avoidance of midday sun, use of sun-protective clothing, use of sunscreen, or limitation or avoidance of indoor tanning) at 3 months of follow-up or longer. For key questions 4 and 5, we included trials, cohort studies, and population-based case–control studies. We excluded cross-sectional studies that were ecological analyses and hospital-based case–control studies because hospital-based control participants are not generally representative of the community, and hospital-based cases can introduce considerable selection bias (3839). Outcomes for key question 5 included potentially clinically important harms (for example, paradoxical increase in sun exposure, reduced physical activity, dysphoric mood, vitamin D deficiency, and increased incidence of nonskin cancer).

Table Jump PlaceholderAppendix Table 1.  Inclusion and Exclusion Criteria, by Key Question

Two investigators independently screened 6132 abstracts, 73 articles for key questions 1 to 3, and 309 articles for key questions 4 and 5.

Data Extraction and Quality Assessment

Two investigators independently assessed study quality using the USPSTF's study design–specific quality criteria and the Newcastle–Ottawa Scale for assessing cohort and case–control studies (16, 40). All poor-quality studies were excluded. Listings of all excluded articles are included in the full evidence report (37).

We found no trials for key question 1, 13 articles (11 unique trials) for key questions 2 and 3, 60 articles (35 unique studies) for key question 4, and 19 articles (17 unique studies) for key question 5. One primary reviewer abstracted relevant information into standardized evidence tables for each included article. A second reviewer checked the abstracted data for accuracy and completeness.

Data Synthesis and Analysis

We were unable to conduct quantitative synthesis primarily because of the heterogeneity of the populations addressed and counseling intervention methods and measurement of exposures and outcomes. Instead, we qualitatively synthesized our results, stratified by population counseled (adults, young adults with a mean age of 18 to 21 years, and children) or type of exposure.

Role of the Funding Source

The Agency for Healthcare Research and Quality funded this research under a contract to support the USPSTF, provided project oversight, reviewed the draft evidence synthesis, and assisted in external review of the draft evidence synthesis. The Agency for Healthcare Research and Quality had no role in the study selection, quality assessment, or evidence synthesis.

Key Questions 1 and 2: Effectiveness of Counseling to Promote Sun-Protective Behaviors

We found no trials meeting our inclusion criteria that directly examined whether behavioral counseling interventions can reduce skin cancer. We included 11 fair-quality, randomized, controlled trials (RCTs) examining counseling interventions that included sun-protective behavior outcomes (Table 2). Quality considerations for these trials are summarized in Table 2.

Table Jump PlaceholderTable 2.  Effectiveness of Behavioral Counseling Interventions to Promote Sun-Protective Behaviors

In adults, 1 trial was conducted in the United Kingdom (41) and 4 trials were conducted in the United States (4245). All of the trials used tailored risk feedback to promote sun-protective behaviors. Three of the counseling interventions conducted in the United States were coupled with in-office computer support on the basis of the transtheoretical model to generate printed stage-based tailored feedback (4345). The trial conducted in the United Kingdom used a self-directed computer station in primary care practice to deliver the counseling intervention (41). Populations studied included predominantly middle-aged white men and women. Interventions ranged from a single 15-minute self-directed session to several sessions with in-person counseling, phone counseling, or written assessments followed by tailored written feedback. Overall, 4 of 5 trials (6949 participants) showed that primary care–relevant counseling with tailored feedback (with or without computer support) can modestly affect self-reported sun-protective behaviors, as measured by composite behavior scores (Table 2) (4244). The differences in these scores, although statistically significant, were small, and it is unclear whether these differences translate into clinically meaningful behavior change. In the 1 trial (724 participants) that also reported individual types of behavior change, only the change in use of sunglasses was statistically significant (Table 2) (42). One trial conducted among siblings of patients with melanoma, which evaluated a similar counseling intervention, did not show any statistically significant changes in sun-protective behaviors (Table 2) (45). This trial, however, used different outcome measures than the other trials and had only 64% follow-up at 12 months.

Four trials in young adults were conducted in university settings and used “appearance-based” behavioral interventions that emphasized the effects of photoaging effects of ultraviolet exposure and norms about tanning and appearing tan instead of a primarily “health-based” message about skin cancer prevention (4649). Interventions ranged from a written self-guided booklet to a brief video and to a 30-minute 1:1 peer-counseling session. In 3 trials (897 participants), the appearance-focused counseling intervention successfully reduced indoor tanning among women who had the intention to tan indoors (Table 2) (46, 4849). Although the interventions decreased indoor tanning behavior by up to 35% (46), follow-up for these trials was only 3 to 6 months. In another RCT (133 participants), a brief video intervention with or without an ultraviolet facial photograph produced a moderate decrease in objectively measured skin pigmentation (using skin reflectance spectrophotometry) at 12 months (Table 2) (47). The change in pigmentation was judged “moderate” on the basis of the Cohen d statistic.

In children, we found only 2 trials (5051). Participants in both trials were predominantly white. In 1 trial (819 participants), young adolescents randomly assigned to brief counseling by their primary care providers, coupled with in-office computer support to generate printed tailored feedback, reported both higher composite sun-protection scores and a greater likelihood of avoiding or limiting midday sun exposure or using sunscreen on the face or sun-exposed areas at 24 months than the attention control group (Table 2). The other cluster RCT, conducted in a large managed care organization, integrated counseling into 4 sequential well-child visits at the discretion of the primary care provider (51). Parents of newborns (728 participants) in practices randomly assigned to receive the intervention reported higher composite sun-protection scores at 36-month follow-up than those in control practices (Table 2). The clinical significance of these higher scores, however, is unclear, given the very small numerical differences and the lack of statistically significant differences in 6 of 7 sun-protection questions that contribute to the composite score.

Key Question 4: Association Between Sun Exposure, Sunscreen Use, and Indoor Tanning and Skin Cancer

Sixty articles representing 35 unique fair- or good-quality studies evaluated the epidemiologic association between sun exposure, indoor tanning, or sunscreen use and skin cancer (Table 3 and Appendix Table 2). We found only 1 good-quality trial, the Nambour Skin Cancer and Actinic Eye Disease Prevention Trial (The Nambour Trial) (53, 85, 8789); 6 fair- or good-quality cohort studies (52, 5456, 64, 86); and 28 fair- or good-quality, population-based, case–control studies (31, 5763, 6584), 3 of which were nested case–control studies (57, 73, 75). Odds ratios (ORs) and risk ratios provide a general estimate of the magnitude of the association between the highest- and lowest-risk groups. The ORs and risk ratios, however, should not be compared between studies because the studies used very different measures of exposures and choice of reference groups. Although measures of sun exposure varied greatly among studies, they can be generally categorized as intermittent, which includes measures of recreational sun exposure; chronic, which includes occupational measures of sun exposure; or total, which are cumulative estimates of sun exposure. This section for key question 4 includes a higher-level synthesis of results (Table 3) and a summary of the major limitations of these results; interested readers may refer to Appendix Table 2 for individual study details with outcome data.

Table Jump PlaceholderTable 3.  Association Between Sun Exposure, Indoor Tanning, or Sunscreen Use and Skin Cancer
Table Jump PlaceholderAppendix Table 2.  Associations Between Sun Exposure, Indoor Tanning, or Sunscreen Use and Skin Cancer (SCC, BCC, or Melanoma)
Sun Exposure

On the basis of 5 fair- or good-quality cohort studies and 7 fair- or good-quality case–control studies, increasing intermittent sun exposure in childhood and during one's lifetime is associated with an increased risk for both squamous cell carcinoma and basal cell carcinoma (range of ORs, 1.27 to 3.86) (Appendix Table 2) (5263). The evidence is more consistent for intermittent sun exposure in childhood leading to an increased risk for squamous cell carcinoma and basal cell carcinoma than in adulthood (52, 58, 60, 62). Although few studies examined the association between total (or cumulative) and chronic (or occupational) sun exposure, most existing studies did not suggest a strong association between total or chronic sun exposure and squamous cell carcinoma or basal cell carcinoma (Appendix Table 2) (5354, 5859, 6162).

On the basis of 1 fair-quality cohort study and 13 fair-quality case–control studies, it seems that increasing intermittent sun exposure is generally associated with an increased risk for melanoma (Appendix Table 2). A large, fair-quality cohort study from Norway and Sweden showed a statistically significant trend between frequency of sunbathing vacations (childhood and adulthood) and the risk for melanoma (64). Of the 8 case–control studies that examined lifetime recreational sun exposure (31, 57, 6566, 6970, 72, 76), 5 studies showed that increasing total recreational sun exposure was associated with melanoma risk (range of ORs, 1.3 to 5.0) (57, 6566, 6970). Three of 4 case–control studies that examined recreational sun exposure during childhood suggest that increasing sunbathing behavior in childhood is associated with an increased risk for melanoma (range of ORs, 1.7 to 3.5) (7071, 73, 75). On the basis of fair-quality case–control studies, it seems that both total and chronic sun exposure are not as strongly associated with melanoma. Six case–control studies included some measure of total sun exposure, either during childhood, during the recent past, or over the lifetime (Appendix Table 2) (65, 67, 69, 7981). These studies showed mixed results: Two studies found a statistically significant association between total lifetime sun exposure and melanoma (65, 81) and 4 did not (67, 69, 7980). All 3 studies that examined total sun exposure during childhood, however, showed a statistically significant association between increasing sun exposure and melanoma (range of ORs, 1.81 to 4.4) (67, 79, 81). Nine case–control studies included some measure of chronic or occupational sun exposure (Appendix Table 2) (6566, 6869, 71, 7780). Three of these studies suggest that occupational sun exposure is associated with an increased risk for melanoma. These studies, however, used crude measures of occupational sun exposure (66, 7778), and 1 study showed an increased risk only with the highest level of occupational exposure (>20 years' exposure) (78). In contrast, 5 of the remaining 6 studies suggest that occupational sun exposure is inversely associated with melanoma risk (65, 6869, 7980).

Indoor Tanning

Five fair-quality case–control studies examined the association between indoor tanning and the risk for squamous cell carcinoma or basal cell carcinoma (Appendix Table 2) (57, 59, 6162, 82). Four of 5 studies used only a crude dichotomous measure of indoor tanning, and none of these studies found a statistically significant association between ever and never use (57, 59, 6162). Three studies adjusted for both skin phenotype and sun exposure (57, 6162). One fair-quality case–control study that was larger and had a slightly higher proportion of exposed persons showed a statistically significant association between indoor tanning and risk for squamous cell carcinoma and basal cell carcinoma, with greater risk for persons who reported early first use (before age 20 years). This study, however, did not adjust for sun exposure (82).

We found 1 fair-quality cohort study and 11 fair-quality case–control studies that examined the association between indoor tanning and melanoma (Appendix Table 2) (31, 57, 64, 66, 68, 7274, 76, 8384, 90). Most studies used crude measures of indoor tanning exposure. The Norwegian–Swedish Women's Lifestyle and Health Cohort Study found that women who reported regular solarium use (≥1 time per month over 2 or 3 decades) from age 10 to 39 years had an increased risk for melanoma (risk ratio, 2.37 [95% CI, 1.37 to 4.08]) after adjustment for important confounders, including skin phenotype and intermittent sun exposure (64). Six of 11 case–control studies did not find a statistically significant association between ever or never use of indoor tanning and melanoma (Appendix Table 2) (66, 68, 7273, 84, 90). Only 1 of 6 negative studies adjusted for both skin phenotype and some measure of sun exposure (90). Of the 4 studies that found a statistically significant association between indoor tanning exposure and melanoma, 2 adjusted for both skin phenotype and some measure of sun exposure (57, 76) and 1 adjusted only for skin phenotype (74). These studies suggest that regular or higher frequency of indoor tanning or use at a younger age may increase risk for melanoma. Only 1 study examined sun lamp (older technology) and tanning bed (newer technology) exposure separately. Although only frequent sun lamp use was associated with increased melanoma risk, study investigators caution that sufficient lag time may not have elapsed to assess a potential effect, given the more recent use of tanning beds (83).

Sunscreen Use

We found 1 RCT (1621 participants) examining whether regular sunscreen use can prevent squamous cell carcinoma or basal cell carcinoma (85, 8788). After 8 years of follow-up, persons randomly assigned to regular sunscreen use had a decreased risk for squamous cell carcinoma (risk ratio, 0.65 [CI, 0.45 to 0.94]) but not basal cell carcinoma (risk ratio, 1.02 [CI 0.78 to 1.35]). Two fair-quality cohort studies from the Nurses' Health Study did not show a decrease in squamous cell carcinoma or basal cell carcinoma risk with sunscreen use after adjusting for skin phenotype and sun exposure (Appendix Table 2) (5556). Both of these studies, however, used only a crude dichotomous measure of sunscreen use. Although 2 fair-quality case–control studies suggest a protective effect of sunscreen for basal cell carcinoma, both used crude measures of sunscreen use and neither adjusted for sun exposure (Appendix Table 2) (5859).

On the basis of 1 fair-quality cohort and 4 fair-quality case–control studies, sunscreen use has no clear protective or harmful effect on the risk for melanoma (Appendix Table 2) (31, 66, 68, 76, 86). One cohort and 1 case–control study found no significant association between a crude dichotomous measure of sunscreen use and risk for melanoma (66, 86). One study found a protective effect for women who reported always using sunscreen compared with those who reported sometimes or never using sunscreen. This study adjusted for skin phenotype and sunburn, but not sun exposure (68). Two studies conducted in Sweden found a statistically significant harmful effect of sunscreen, such that persons who reported always or almost always using sunscreen were at increased risk for melanoma, after adjustment for both skin phenotype and sun exposure (31, 76).

Study Heterogeneity and Methodological Limitations

This body of epidemiologic evidence examining sun exposure, indoor tanning, and sunscreen use has several important limitations. There was great heterogeneity in the actual measurement of sun exposure among studies, the categorization of levels of exposure, and in choice of reference groups. Sun-exposure measurements used different definitions and assessment methods and often covered different periods of a person's life. Measurement of sunscreen rarely included important details, such as sun protection factor, amount, frequency and duration, and years because sunscreens have changed over time. Likewise, measurement of indoor tanning rarely included important details, such as rationale or motivation of use, frequency and duration, and years because indoor tanning devices have also changed over time. Adjustment for important confounders and stratification to examine effect modification also varied across studies. Studies examining sun exposure generally adjusted for age, sex, and some measure of skin phenotype or sun sensitivity. Several studies examining indoor tanning and sunscreen use did not adjust for sun exposure. Some studies also may have overadjusted for confounding, such as adjustment for nevi, freckling, or sunburn history, because these are probably intermediate steps in carcinogenesis or surrogates for sun exposure. Finally, only 4 studies presented results stratified by skin phenotype; these studies suggest an interaction between skin phenotype and skin cancer (25, 57, 75, 91). Therefore, simply adjusting for skin type as a confounder in logistic regression may be insufficient to illuminate the effect of sun exposure in at-risk populations (for example, poor tanners). Lack of adequate adjustment and lack of stratification for skin phenotype may explain the lack of association seen in some studies or inverse association reported with occupational sun exposure.

Key Questions 3 and 5: Potential Harms of Sun-Protective Behaviors

On the basis of the trials included in key questions 1 and 2, we found no evidence for harms of counseling to prevent skin cancer. In addition, we found 17 fair- or good-quality studies that directly examined the potential harms of sun-protective behaviors (Table 4) (92107). Overall validity concerns are summarized in Table 4. One fair-quality trial that examined whether adherence to sun-protective behaviors in children reduces physical activity found no difference in body mass index or self-reported time spent outdoors at long-term follow-up between children receiving sun-protection curricula versus standard health-education curricula in schools (92). This finding is consistent with 1 of the included counseling trials that found no difference in self-reported measures of physical activity (50, 106107). Six fair- or good-quality trials examined whether sunscreen use leads to increased sun exposure (9395, 108110). These RCTs suggest that sunscreen with a higher sun protection factor may increase intentional sun exposure in healthy student volunteers on vacation. Sunscreen use in general, however, does not promote increased sun exposure. Three fair-quality studies examined the effect of sun exposure or sunscreen use on vitamin D levels (9697, 111). One small, fair-quality trial showed that sunscreen use during the summer did not significantly decrease vitamin D levels or cause vitamin D deficiency (96). Two fair-quality cohort studies demonstrated that vitamin D levels were influenced by sun exposure, such that post- or perimenopausal women living at high altitudes were at risk for transient vitamin D deficiency during winter months (97, 111).

It is hypothesized that sun exposure may be protective against some types of cancer through vitamin D production. Seven fair- or good-quality studies examined the relationship between sun exposure and risk for nonskin cancer (9899, 101105). On the basis of a sparse body of fair- or good-quality cohort and case–control studies, it seems that sun exposure in lighter pigmented persons may be inversely related to risk for advanced breast and prostate cancer after adjustment for well-established risk factors and that intermittent sun exposure may be inversely related to risk for non-Hodgkin lymphoma (98, 100103, 105). None of these studies, however, directly measured vitamin D status.

New evidence since the 2003 USPSTF recommendation suggests that counseling relevant to primary care can change sun-protective behaviors (Table 4). In young women, appearance-focused behavioral interventions can decrease indoor tanning behaviors and ultraviolet exposure in the short term. In young adolescents, primary care counseling with computer support can decrease midday sun exposure and increase sunscreen use. Evidence in adults and parents of newborns suggests that behavioral interventions can minimally increase composite scores measuring sun-protective behaviors. It is unclear, however, whether the small differences in composite scores of self-reported sun-protective behaviors translate into clinically meaningful behavior change to prevent skin cancer or sunburns.

Most of the counseling interventions that were effective in promoting sun-protective behaviors in adults incorporated computerized support providing tailored patient education. This type of computerized support is not widely available, although it is unclear whether it is essential to the effectiveness of the interventions. All trials conducted in young adults used “appearance-focused” behavioral interventions primarily aimed at women. It is possible that different counseling messages will be effective for populations of different age or sex. More primary care–relevant counseling trials to promote sun-protective behaviors are needed, especially in younger persons. On the basis of the epidemiologic evidence, childhood seems to be the ideal time to intervene in terms of sun-protective behaviors. Trials of successful interventions need to be replicated in other populations, however, and trials should incorporate more consistent and robust measures of ultraviolet exposure, sun-protective behaviors, and indoor tanning (112113).

Overall, we found little evidence that sun-protective counseling or practicing sun-protective behaviors cause important harms, including decreasing physical activity, paradoxically increasing sun exposure, or causing clinically significant vitamin D deficiency. A recent report from the World Health Organization International Agency for Research on Cancer addresses the complex relationship between serum vitamin D levels and sun exposure (114). Although cutaneous vitamin D synthesis varies among persons, it generally happens relatively quickly, such that maximum vitamin D synthesis occurs at suberythemogenic ultraviolet doses (114). In addition, this report recognizes the importance of dietary vitamin D during the winter when skin synthesis of vitamin D is insufficient (114). Finally, it has been hypothesized that vitamin D production may be protective against certain types of cancer. The few case–control studies published on this topic suggest that intermittent sun exposure in lighter-pigmented persons may be inversely related to risk for advanced breast cancer, prostate cancer, and non-Hodgkin lymphoma. However, this literature is sparse, and the available population-based case–control studies lack adjustment for vitamin D intake and direct measurement of vitamin D levels. Furthermore, given the limited number of published studies, it is likely that this body of literature is affected by publication bias (114).

Fair-quality cohort and case–control studies examining the relationship between sun exposure and skin cancer suggests that increasing intermittent (or recreational) sun exposure is associated with an increased risk for all types of skin cancer (Table 4). Fewer studies examined the association of total and chronic (or occupational) sun exposure. These studies do not suggest a strong association between total or chronic sun exposure and skin cancer. Our findings are generally consistent with other existing reviews examining the association between ultraviolet exposure and skin cancer (23, 115). A limited number of studies using crude measures of indoor tanning exposure examined the risk for squamous cell carcinoma and basal cell carcinoma, after adjusting for all important confounders. However, a slightly larger body of higher-quality evidence suggests that regular or early use of indoor tanning may increase the risk for melanoma. Again, this finding is consistent with an existing review by the International Agency for Research on Cancer Working Group on artificial ultraviolet light and skin cancer that found evidence to suggest that first use of indoor tanning equipment before age 35 years increases risk for melanoma (17). Regular sunscreen use can prevent squamous cell carcinoma, but it is unclear whether it can prevent basal cell carcinoma or melanoma. This finding is consistent with a fair-quality systematic review and meta-analysis by Dennis and colleagues (18) that found no significant association between melanoma and sunscreen use. Therefore, behavioral counseling to promote skin cancer prevention should focus on improving several behaviors to reduce ultraviolet exposure and not on increasing sunscreen use alone.

Despite the number of relevant cohort and population-based case–control studies, the available literature is limited because of the complex and variable nature of measuring sun exposure and sunscreen use; inconsistent and inadequate evaluation of important confounders and effect modifiers; and problems with recall bias, retest reliability, and other errors in determining true exposure (116). However, 1 included study found little evidence of important recall bias of ultraviolet exposure (73). In addition, the associations observed in these studies may not apply to current use of indoor tanning or sunscreen because these technologies have changed in the recent past. Indoor tanning devices produced before 1980 had higher ultraviolet B (UVB) content, and those produced after 1980 had higher ultraviolet A (UVA) content (83). Furthermore, modern tanning beds have undergone technologic advances to enrich UVB that allow shorter duration of exposure. In practice, however, the proportion of UVB output of indoor tanning devices varies (17). Likewise, sunscreens have also changed over time. Sun protection factor was introduced in 1978, and protection for UVA was not added until 1989. Ultraviolet sun exposure is approximately 5% UVB and 95% UVA (17). In addition, current sunscreens offer higher-level sun protection factor and water resistance.

More and better-designed studies are needed to examine the potential harms of sunscreen use and decreased sun exposure on vitamin D and other diseases hypothesized to be affected by vitamin D, including nonskin cancer. Currently, no evidence suggests that sun-protective behavior messages aimed at reducing prolonged or intense sun exposure and sunburns cause important harms, such as vitamin D deficiency or increasing risk for cancer. Additional studies with more detailed assessment of sunscreen and indoor tanning are needed. It is important that these studies consistently adjust for both important host and environmental factors. Survey instruments to assess for these types of exposure must be reliable and validated. This body of evidence would be strengthened if studies used the same or similar measurements to facilitate comparisons across studies. It will probably take decades to see a potential protective effect of regular use of sunscreens on melanoma risk or potential harms of current tanning beds on melanoma risk. Therefore, studies evaluating current sunscreens and indoor tanning will continue to be necessary well into the future.

American Cancer Society.  Skin Cancer Facts. Accessed atwww.cancer.org/Cancer/CancerCauses/SunandUVExposure/skin-cancer-facts?sitearear+PED2008. on 10 December 2010.
 
Altekruse SF, Kosary CL, Krapcho M, Neyman N, Aminou R, Waldron W, et al.  SEER Cancer Statistics Review, 1975-2007, National Cancer Institute. Bethesda, MD. Accessed athttp://seer.cancer.gov/csr/1975_2007/on 14 December 2010.
 
Berwick M, Wiggins C.  The current epidemiology of cutaneous malignant melanoma. Front Biosci. 2006; 11:1244-54.
PubMed
CrossRef
 
Linos E, Swetter SM, Cockburn MG, Colditz GA, Clarke CA.  Increasing burden of melanoma in the United States. J Invest Dermatol. 2009; 129:1666-74.
PubMed
 
Purdue MP, Freeman LE, Anderson WF, Tucker MA.  Recent trends in incidence of cutaneous melanoma among US Caucasian young adults [Letter]. J Invest Dermatol. 2008; 128:2905-8.
PubMed
 
Gandini S, Sera F, Cattaruzza MS, Pasquini P, Zanetti R, Masini C. et al.  Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur J Cancer. 2005; 41:2040-59.
PubMed
 
Markovic SN, Erickson LA, Rao RD, Weenig RH, Pockaj BA, Bardia A, et al. Melanoma Study Group of the Mayo Clinic Cancer Center.  Malignant melanoma in the 21st century, part 1: epidemiology, risk factors, screening, prevention, and diagnosis. Mayo Clin Proc. 2007; 82:364-80.
PubMed
 
IARC Working Group Reports.  IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Solar and Ultraviolet Radiation. vol. 55. Lyon, France: IARCPress; 1992.
 
Balk SJ, O'Connor KG, Saraiya M.  Counseling parents and children on sun protection: a national survey of pediatricians. Pediatrics. 2004; 114:1056-64.
PubMed
 
Gritz ER, Tripp MK, deMoor CA, Eicher SA, Mueller NH, Spedale JH.  Skin cancer prevention counseling and clinical practices of pediatricians. Pediatr Dermatol. 2003; 20:16-24.
PubMed
 
Hornung RL, Hansen LA, Sharp LK, Poorsattar SP, Lipsky MS.  Skin cancer prevention in the primary care setting: assessment using a standardized patient. Pediatr Dermatol. 2007; 24:108-12.
PubMed
 
Kasparian , McLoone JK, Meiser B.  Skin cancer-related prevention and screening behaviors: a review of the literature. J Behav Med. 2009; 32:406-28.
PubMed
 
Geller AC, Colditz G, Oliveria S, Emmons K, Jorgensen C, Aweh GN. et al.  Use of sunscreen, sunburning rates, and tanning bed use among more than 10 000 US children and adolescents. Pediatrics. 2002; 109:1009-14.
PubMed
 
Coups EJ, Manne SL, Heckman CJ.  Multiple skin cancer risk behaviors in the U.S. population. Am J Prev Med. 2008; 34:87-93.
PubMed
 
Helfand M, Krages KP.  Counseling to Prevent Skin Cancer: A Summary of the Evidence. (AHRQ Pub. No. 03–521B). Rockville, MD: Agency for Healthcare Research and Quality; 2003.
 
www.ahrq.gov/clinic/uspstf08/methods/procmanual.htmU.S. Preventive Services Task Force.  U.S. Preventive Services Task Force Procedure Manual. (AHRQ Publication No. 08-05118-EF). Rockville, MD: Agency for Healthcare Research and Quality; 2008.
 
International Agency for Research on Cancer Working Group on artificial ultraviolet (UV) light and skin cancer.  The association of use of sunbeds with cutaneous malignant melanoma and other skin cancers: a systematic review. Int J Cancer. 2007; 120:1116-22.
PubMed
 
Dennis LK, BeaneFreeman LE, VanBeek MJ.  Sunscreen use and the risk for melanoma: a quantitative review. Ann Intern Med. 2003; 139:966-78.
PubMed
 
Elwood JM, Jopson J.  Melanoma and sun exposure: an overview of published studies. Int J Cancer. 1997; 73:198-203.
PubMed
 
English DR, Armstrong BK, Kricker A, Winter MG, Heenan PJ, Randell PL.  Demographic characteristics, pigmentary and cutaneous risk factors for squamous cell carcinoma of the skin: a case-control study. Int J Cancer. 1998; 76:628-34.
PubMed
 
Gallagher RP, Spinelli JJ, Lee TK.  Tanning beds, sunlamps, and risk of cutaneous malignant melanoma. Cancer Epidemiol Biomarkers Prev. 2005; 14:562-6.
PubMed
 
Gandini S, Sera F, Cattaruzza MS, Pasquini P, Abeni D, Boyle P. et al.  Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur J Cancer. 2005; 41:28-44.
PubMed
 
Gandini S, Sera F, Cattaruzza MS, Pasquini P, Picconi O, Boyle P. et al.  Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer. 2005; 41:45-60.
PubMed
 
Gorham ED, Mohr SB, Garland CF, Chaplin G, Garland FC.  Do sunscreens increase risk of melanoma in populations residing at higher latitudes? Ann Epidemiol. 2007; 17:956-63.
PubMed
 
Kricker A, Armstrong BK, English DR, Heenan PJ.  A dose-response curve for sun exposure and basal cell carcinoma. Int J Cancer. 1995; 60:482-8.
PubMed
 
Nelemans PJ, Rampen FH, Ruiter DJ, Verbeek AL.  An addition to the controversy on sunlight exposure and melanoma risk: a meta-analytical approach. J Clin Epidemiol. 1995; 48:1331-42.
PubMed
 
Oliveria SA, Saraiya M, Geller AC, Heneghan MK, Jorgensen C.  Sun exposure and risk of melanoma. Arch Dis Child. 2006; 91:131-8.
PubMed
 
Rosso S, Zanetti R, Pippione M, Sancho-Garnier H.  Parallel risk assessment of melanoma and basal cell carcinoma: skin characteristics and sun exposure. Melanoma Res. 1998; 8:573-83.
PubMed
 
Westerdahl J, Olsson H, Måsbäck A, Ingvar C, Jonsson N.  Is the use of sunscreens a risk factor for malignant melanoma? Melanoma Res. 1995; 5:59-65.
PubMed
 
Westerdahl J, Ingvar C, Måsbäck A, Jonsson N, Olsson H.  Risk of cutaneous malignant melanoma in relation to use of sunbeds: further evidence for UV-A carcinogenicity. Br J Cancer. 2000; 82:1593-9.
PubMed
 
Westerdahl J, Ingvar C, Mâsbäck A, Olsson H.  Sunscreen use and malignant melanoma. Int J Cancer. 2000; 87:145-50.
PubMed
 
Saraiya M, Glanz K, Briss PA, Nichols P, White C, Das D. et al.  Interventions to prevent skin cancer by reducing exposure to ultraviolet radiation: a systematic review. Am J Prev Med. 2004; 27:422-66.
PubMed
 
Huncharek M, Kupelnick B.  Use of topical sunscreens and the risk of malignant melanoma: a meta-analysis of 9067 patients from 11 case-control studies. Am J Public Health. 2002; 92:1173-7.
PubMed
 
Gefeller O, Pfahlberg A.  Sunscreen use and melanoma: a case of evidence-based prevention? Photodermatol Photoimmunol Photomed. 2002;18:153-6; discussion 156. [PMID: 12207681]
 
Grant WB.  A meta-analysis of second cancers after a diagnosis of nonmelanoma skin cancer: additional evidence that solar ultraviolet-B irradiance reduces the risk of internal cancers. J Steroid Biochem Mol Biol. 2007; 103:668-74.
PubMed
 
Autier P, Boniol M, Doré JF.  Sunscreen use and increased duration of intentional sun exposure: still a burning issue. Int J Cancer. 2007; 121:1-5.
PubMed
 
Lin JS, Eder M, Weinmann S, Zuber SP, Beil TL, Plaut D, et al.  Behavioral Counseling to Prevent Skin Cancer: Systematic Evidence Review to Update the 2003 U.S. Preventive Services Task Force Recommendation. Evidence Synthesis No. 82. AHRQ Publication No. 11-05152-EF-1. Rockville, MD: Agency for Healthcare Quality and Research; February 2011.
 
Bastuji-Garin S, Diepgen TL.  Cutaneous malignant melanoma, sun exposure, and sunscreen use: epidemiological evidence. Br J Dermatol. 2002; 146:Suppl 6124-30.
PubMed
 
Koepsell T, Weiss N.  Epidemiologic Methods: Studying the Occurence of Illness. New York: Oxford Univ Pr; 2003.
 
Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al.  The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Accessed atwww.ohri.ca/programs/clinical_epidemiology/oxford.htmon 10 December 2010.
 
Glazebrook C, Garrud P, Avery A, Coupland C, Williams H.  Impact of a multimedia intervention “Skinsafe” on patients' knowledge and protective behaviors. Prev Med. 2006; 42:449-54.
PubMed
 
Glanz K, Schoenfeld ER, Steffen A.  A randomized trial of tailored skin cancer prevention messages for adults: Project SCAPE. Am J Public Health. 2010; 100:735-41.
PubMed
 
Prochaska JO, Velicer WF, Redding C, Rossi JS, Goldstein M, DePue J. et al.  Stage-based expert systems to guide a population of primary care patients to quit smoking, eat healthier, prevent skin cancer, and receive regular mammograms. Prev Med. 2005; 41:406-16.
PubMed
 
Prochaska JO, Velicer WF, Rossi JS, Redding CA, Greene GW, Rossi SR. et al.  Multiple risk expert systems interventions: impact of simultaneous stage-matched expert system interventions for smoking, high-fat diet, and sun exposure in a population of parents. Health Psychol. 2004; 23:503-16.
PubMed
 
Geller AC, Emmons KM, Brooks DR, Powers C, Zhang Z, Koh HK. et al.  A randomized trial to improve early detection and prevention practices among siblings of melanoma patients. Cancer. 2006; 107:806-14.
PubMed
 
Hillhouse J, Turrisi R, Stapleton J, Robinson J.  A randomized controlled trial of an appearance-focused intervention to prevent skin cancer. Cancer. 2008; 113:3257-66.
PubMed
 
Mahler HI, Kulik JA, Gerrard M, Gibbons FX.  Long-term effects of appearance-based interventions on sun protection behaviors. Health Psychol. 2007; 26:350-60.
PubMed
 
Stapleton J, Turrisi R, Hillhouse J, Robinson JK, Abar B.  A comparison of the efficacy of an appearance-focused skin cancer intervention within indoor tanner subgroups identified by latent profile analysis. J Behav Med. 2010; 33:181-90.
PubMed
 
Turrisi R, Mastroleo NR, Stapleton J, Mallett K.  A comparison of 2 brief intervention approaches to reduce indoor tanning behavior in young women who indoor tan very frequently [Letter]. Arch Dermatol. 2008; 144:1521-4.
PubMed
 
Norman GJ, Adams MA, Calfas KJ, Covin J, Sallis JF, Rossi JS. et al.  A randomized trial of a multicomponent intervention for adolescent sun protection behaviors. Arch Pediatr Adolesc Med. 2007; 161:146-52.
PubMed
 
Crane LA, Deas A, Mokrohisky ST, Ehrsam G, Jones RH, Dellavalle R. et al.  A randomized intervention study of sun protection promotion in well-child care. Prev Med. 2006; 42:162-70.
PubMed
 
van Dam RM, Huang Z, Rimm EB, Weinstock MA, Spiegelman D, Colditz GA. et al.  Risk factors for basal cell carcinoma of the skin in men: results from the health professionals follow-up study. Am J Epidemiol. 1999; 150:459-68.
PubMed
 
Neale RE, Davis M, Pandeya N, Whiteman DC, Green AC.  Basal cell carcinoma on the trunk is associated with excessive sun exposure. J Am Acad Dermatol. 2007; 56:380-6.
PubMed
 
Green A, Battistutta D, Hart V, Leslie D, Weedon D.  Skin cancer in a subtropical Australian population: incidence and lack of association with occupation. The Nambour Study Group. Am J Epidemiol. 1996; 144:1034-40.
PubMed
 
Grodstein F, Speizer FE, Hunter DJ.  A prospective study of incident squamous cell carcinoma of the skin in the Nurses' Health Study. J Natl Cancer Inst. 1995; 87:1061-6.
PubMed
 
Hunter DJ, Colditz GA, Stampfer MJ, Rosner B, Willett WC, Speizer FE.  Risk factors for basal cell carcinoma in a prospective cohort of women. Ann Epidemiol. 1990; 1:13-23.
PubMed
 
Han J, Colditz GA, Hunter DJ.  Risk factors for skin cancers: a nested case-control study within the Nurses' Health Study. Int J Epidemiol. 2006; 35:1514-21.
PubMed
 
Kricker A, Armstrong BK, English DR, Heenan PJ.  Pigmentary and cutaneous risk factors for non-melanocytic skin cancer—a case-control study. Int J Cancer. 1991; 48:650-62.
PubMed
 
Rosso S, Joris F, Zanetti R.  Risk of basal and squamous cell carcinomas of the skin in Sion, Switzerland: a case-control study. Tumori. 1999; 85:435-42.
PubMed
 
Chen YC, Christiani DC, Su HJ, Hsueh YM, Smith TJ, Ryan LM. et al.  Early-life or lifetime sun exposure, sun reaction, and the risk of squamous cell carcinoma in an Asian population. Cancer Causes Control. 2010; 21:771-6.
PubMed
 
Gallagher RP, Hill GB, Bajdik CD, Coldman AJ, Fincham S, McLean DI. et al.  Sunlight exposure, pigmentation factors, and risk of nonmelanocytic skin cancer. II. Squamous cell carcinoma. Arch Dermatol. 1995; 131:164-9.
PubMed
 
Gallagher RP, Hill GB, Bajdik CD, Fincham S, Coldman AJ, McLean DI. et al.  Sunlight exposure, pigmentary factors, and risk of nonmelanocytic skin cancer. I. Basal cell carcinoma. Arch Dermatol. 1995; 131:157-63.
PubMed
 
Vlajinac HD, Adanja BJ, Lazar ZF, Bogavac AN, Bjekić MD, Marinkovic JM. et al.  Risk factors for basal cell carcinoma. Acta Oncol. 2000; 39:611-6.
PubMed
 
Veierød MB, Adami HO, Lund E, Armstrong BK, Weiderpass E.  Sun and solarium exposure and melanoma risk: effects of age, pigmentary characteristics, and nevi. Cancer Epidemiol Biomarkers Prev. 2010; 19:111-20.
PubMed
 
Berwick M, Begg CB, Fine JA, Roush GC, Barnhill RL.  Screening for cutaneous melanoma by skin self-examination. J Natl Cancer Inst. 1996; 88:17-23.
PubMed
 
Fargnoli MC, Piccolo D, Altobelli E, Formicone F, Chimenti S, Peris K.  Constitutional and environmental risk factors for cutaneous melanoma in an Italian population. A case-control study. Melanoma Res. 2004; 14:151-7.
PubMed
 
Green AC, O'Rourke MG.  Cutaneous malignant melanoma in association with other skin cancers. J Natl Cancer Inst. 1985; 74:977-80.
PubMed
 
Holly EA, Aston DA, Cress RD, Ahn DK, Kristiansen JJ.  Cutaneous melanoma in women. I. Exposure to sunlight, ability to tan, and other risk factors related to ultraviolet light. Am J Epidemiol. 1995; 141:923-33.
PubMed
 
Gallagher RP, Elwood JM, Hill GB.  Risk factors for cutaneous malignant melanoma: the Western Canada Melanoma Study. Recent Results Cancer Res. 1986; 102:38-55.
PubMed
 
Zanetti R, Franceschi S, Rosso S, Colonna S, Bidoli E.  Cutaneous melanoma and sunburns in childhood in a southern European population. Eur J Cancer. 1992; 28A:1172-6.
PubMed
 
Le Marchand L, Saltzman BS, Hankin JH, Wilkens LR, Franke AA, Morris SJ. et al.  Sun exposure, diet, and melanoma in Hawaii Caucasians. Am J Epidemiol. 2006; 164:232-45.
PubMed
 
Osterlind A, Tucker MA, Stone BJ, Jensen OM.  The Danish case-control study of cutaneous malignant melanoma. II. Importance of UV-light exposure. Int J Cancer. 1988; 42:319-24.
PubMed
 
Parr CL, Hjartåker A, Laake P, Lund E, Veierød MB.  Recall bias in melanoma risk factors and measurement error effects: a nested case-control study within the Norwegian Women and Cancer Study. Am J Epidemiol. 2009; 169:257-66.
PubMed
 
Walter SD, King WD, Marrett LD.  Association of cutaneous malignant melanoma with intermittent exposure to ultraviolet radiation: results of a case-control study in Ontario, Canada. Int J Epidemiol. 1999; 28:418-27.
PubMed
 
Weinstock MA, Colditz GA, Willett WC, Stampfer MJ, Bronstein BR, Mihm MC Jr. et al.  Melanoma and the sun: the effect of swimsuits and a “healthy” tan on the risk of nonfamilial malignant melanoma in women. Am J Epidemiol. 1991; 134:462-70.
PubMed
 
Westerdahl J, Olsson H, Ingvar C.  At what age do sunburn episodes play a crucial role for the development of malignant melanoma. Eur J Cancer. 1994; 30A:1647-54.
PubMed
 
Garbe C, Krüger S, Stadler R, Guggenmoos-Holzmann I, Orfanos CE.  Markers and relative risk in a German population for developing malignant melanoma. Int J Dermatol. 1989; 28:517-23.
PubMed
 
Nagore E, Hueso L, Botella-Estrada R, Alfaro-Rubio A, Serna I, Guallar J. et al.  Smoking, sun exposure, number of nevi and previous neoplasias are risk factors for melanoma in older patients (60 years and over). J Eur Acad Dermatol Venereol. 2010; 24:50-7.
PubMed
 
Tabenkin H, Tamir A, Sperber AD, Shapira M, Shvartzman P.  A case-control study of malignant melanoma in Israeli kibbutzim. Isr Med Assoc J. 1999; 1:154-7.
PubMed
 
White E, Kirkpatrick CS, Lee JA.  Case-control study of malignant melanoma in Washington State. I. Constitutional factors and sun exposure. Am J Epidemiol. 1994; 139:857-68.
PubMed
 
Shors AR, Solomon C, McTiernan A, White E.  Melanoma risk in relation to height, weight, and exercise (United States). Cancer Causes Control. 2001; 12:599-606.
PubMed
 
Karagas MR, Stannard VA, Mott LA, Slattery MJ, Spencer SK, Weinstock MA.  Use of tanning devices and risk of basal cell and squamous cell skin cancers. J Natl Cancer Inst. 2002; 94:224-6.
PubMed
 
Clough-Gorr KM, Titus-Ernstoff L, Perry AE, Spencer SK, Ernstoff MS.  Exposure to sunlamps, tanning beds, and melanoma risk. Cancer Causes Control. 2008; 19:659-69.
PubMed
 
Bataille V, Boniol M, DeVries E, Severi G, Brandberg Y, Sasieni P. et al.  A multicentre epidemiological study on sunbed use and cutaneous melanoma in Europe. Eur J Cancer. 2005; 41:2141-9.
PubMed
 
Green A, Williams G, Neale R, Hart V, Leslie D, Parsons P. et al.  Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: a randomised controlled trial. Lancet. 1999; 354:723-9.
PubMed
 
Cho E, Rosner BA, Feskanich D, Colditz GA.  Risk factors and individual probabilities of melanoma for whites. J Clin Oncol. 2005; 23:2669-75.
PubMed
 
Green A, Battistutta D, Hart V, Leslie D, Marks G, Williams G. et al.  The Nambour Skin Cancer and Actinic Eye Disease Prevention Trial: design and baseline characteristics of participants. Control Clin Trials. 1994; 15:512-22.
PubMed
 
Pandeya N, Purdie DM, Green A, Williams G.  Repeated occurrence of basal cell carcinoma of the skin and multifailure survival analysis: follow-up data from the Nambour Skin Cancer Prevention Trial. Am J Epidemiol. 2005; 161:748-54.
PubMed
 
van der Pols JC, Williams GM, Pandeya N, Logan V, Green AC.  Prolonged prevention of squamous cell carcinoma of the skin by regular sunscreen use. Cancer Epidemiol Biomarkers Prev. 2006; 15:2546-8.
PubMed
 
Chen YT, Dubrow R, Zheng T, Barnhill RL, Fine J, Berwick M.  Sunlamp use and the risk of cutaneous malignant melanoma: a population-based case-control study in Connecticut, USA. Int J Epidemiol. 1998; 27:758-65.
PubMed
 
Kricker A, Armstrong BK, English DR, Heenan PJ.  Does intermittent sun exposure cause basal cell carcinoma? a case-control study in Western Australia. Int J Cancer. 1995; 60:489-94.
PubMed
 
Milne E, Simpson JA, Johnston R, Giles-Corti B, English DR.  Time spent outdoors at midday and children's body mass index. Am J Public Health. 2007; 97:306-10.
PubMed
 
Autier P, Doré JF, Négrier S, Liénard D, Panizzon R, Lejeune FJ. et al.  Sunscreen use and duration of sun exposure: a double-blind, randomized trial. J Natl Cancer Inst. 1999; 91:1304-9.
PubMed
 
Autier P, Doré JF, Reis AC, Grivegnée A, Ollivaud L, Truchetet F. et al.  Sunscreen use and intentional exposure to ultraviolet A and B radiation: a double blind randomized trial using personal dosimeters. Br J Cancer. 2000; 83:1243-8.
PubMed
 
Dupuy A, Dunant A, Grob JJ, Réseau d'Epidémiologie en Dermatologie.  Randomized controlled trial testing the impact of high-protection sunscreens on sun-exposure behavior. Arch Dermatol. 2005; 141:950-6.
PubMed
 
Marks R, Foley PA, Jolley D, Knight KR, Harrison J, Thompson SC.  The effect of regular sunscreen use on vitamin D levels in an Australian population. Results of a randomized controlled trial. Arch Dermatol. 1995; 131:415-21.
PubMed
 
Brot C, Vestergaard P, Kolthoff N, Gram J, Hermann AP, Sørensen OH.  Vitamin D status and its adequacy in healthy Danish perimenopausal women: relationships to dietary intake, sun exposure and serum parathyroid hormone. Br J Nutr. 2001; 86:Suppl 1S97-103.
PubMed
 
John EM, Schwartz GG, Dreon DM, Koo J.  Vitamin D and breast cancer risk: the NHANES I Epidemiologic follow-up study, 1971-1975 to 1992. National Health and Nutrition Examination Survey. Cancer Epidemiol Biomarkers Prev. 1999; 8:399-406.
PubMed
 
Kampman E, Slattery ML, Caan B, Potter JD.  Calcium, vitamin D, sunshine exposure, dairy products and colon cancer risk (United States). Cancer Causes Control. 2000; 11:459-66.
PubMed
 
Hughes AM, Armstrong BK, Vajdic CM, Turner J, Grulich A, Fritschi L. et al.  Pigmentary characteristics, sun sensitivity and non-Hodgkin lymphoma. Int J Cancer. 2004; 110:429-34.
PubMed
 
Hughes AM, Armstrong BK, Vajdic CM, Turner J, Grulich AE, Fritschi L. et al.  Sun exposure may protect against non-Hodgkin lymphoma: a case-control study. Int J Cancer. 2004; 112:865-71.
PubMed
 
Smedby KE, Hjalgrim H, Melbye M, Torrång A, Rostgaard K, Munksgaard L. et al.  Ultraviolet radiation exposure and risk of malignant lymphomas. J Natl Cancer Inst. 2005; 97:199-209.
PubMed
 
John EM, Schwartz GG, Koo J, Van Den Berg D, Ingles SA.  Sun exposure, vitamin D receptor gene polymorphisms, and risk of advanced prostate cancer. Cancer Res. 2005; 65:5470-9.
PubMed
 
Hartge P, Lim U, Freedman DM, Colt JS, Cerhan JR, Cozen W. et al.  Ultraviolet radiation, dietary vitamin D, and risk of non-Hodgkin lymphoma (United States). Cancer Causes Control. 2006; 17:1045-52.
PubMed
 
John EM, Schwartz GG, Koo J, Wang W, Ingles SA.  Sun exposure, vitamin D receptor gene polymorphisms, and breast cancer risk in a multiethnic population. Am J Epidemiol. 2007; 166:1409-19.
PubMed
 
Patrick K, Calfas KJ, Norman GJ, Zabinski MF, Sallis JF, Rupp J. et al.  Randomized controlled trial of a primary care and home-based intervention for physical activity and nutrition behaviors: PACE+ for adolescents. Arch Pediatr Adolesc Med. 2006; 160:128-36.
PubMed
 
Rosenberg DE, Norman GJ, Sallis JF, Calfas KJ, Patrick K.  Covariation of adolescent physical activity and dietary behaviors over 12 months. J Adolesc Health. 2007; 41:472-8.
PubMed
 
Autier P, Severi G, Doré JF.  Betacarotene and sunscreen use [Letter]. Lancet. 1999; 354:2163-4.
PubMed
 
Gallagher RP, Rivers JK, Lee TK, Bajdik CD, McLean DI, Coldman AJ.  Broad-spectrum sunscreen use and the development of new nevi in white children: A randomized controlled trial. JAMA. 2000; 283:2955-60.
PubMed
 
Bauer J, Büttner P, Wiecker TS, Luther H, Garbe C.  Interventional study in 1,232 young German children to prevent the development of melanocytic nevi failed to change sun exposure and sun protective behavior. Int J Cancer. 2005; 116:755-61.
PubMed
 
Burgaz A, Akesson A, Michaëlsson K, Wolk A.  25-hydroxyvitamin D accumulation during summer in elderly women at latitude 60 degrees N. J Intern Med. 2009; 266:476-83.
PubMed
 
Glanz K, Yaroch AL, Dancel M, Saraiya M, Crane LA, Buller DB. et al.  Measures of sun exposure and sun protection practices for behavioral and epidemiologic research. Arch Dermatol. 2008; 144:217-22.
PubMed
 
Lazovich D, Stryker JE, Mayer JA, Hillhouse J, Dennis LK, Pichon L. et al.  Measuring nonsolar tanning behavior: indoor and sunless tanning. Arch Dermatol. 2008; 144:225-30.
PubMed
 
IARC Working Group Reports.  Vitamin D and Cancer. vol. 5. Lyon, France: International Agency for Research on Cancer; 2008.
 
Chang YM, Barrett JH, Bishop DT, Armstrong BK, Bataille V, Bergman W. et al.  Sun exposure and melanoma risk at different latitudes: a pooled analysis of 5700 cases and 7216 controls. Int J Epidemiol. 2009; 38:814-30.
PubMed
 
Worswick SD, Cockburn M, Peng D.  Measurement of ultraviolet exposure in epidemiological studies of skin and skin cancers. Photochem Photobiol. 2008; 84:1462-72.
PubMed
 
Bajdik CD, Gallagher RP, Astrakianakis G, Hill GB, Fincham S, McLean DI.  Non-solar ultraviolet radiation and the risk of basal and squamous cell skin cancer. Br J Cancer. 1996; 73:1612-4.
PubMed
 
English DR, Armstrong BK, Kricker A, Winter MG, Heenan PJ, Randell PL.  Case-control study of sun exposure and squamous cell carcinoma of the skin. Int J Cancer. 1998; 77:347-53.
PubMed
 
Lea CS, Scotto JA, Buffler PA, Fine J, Barnhill RL, Berwick M.  Ambient UVB and melanoma risk in the United States: a case-control analysis. Ann Epidemiol. 2007; 17:447-53.
PubMed
 
Chen YT, Dubrow R, Holford TR, Zheng T, Barnhill RL, Fine J. et al.  Malignant melanoma risk factors by anatomic site: a case-control study and polychotomous logistic regression analysis. Int J Cancer. 1996; 67:636-43.
PubMed
 
Elwood JM, Gallagher RP, Hill GB, Pearson JC.  Cutaneous melanoma in relation to intermittent and constant sun exposure—the Western Canada Melanoma Study. Int J Cancer. 1985; 35:427-33.
PubMed
 
Elwood JM, Gallagher RP, Hill GB, Spinelli JJ, Pearson JC, Threlfall W.  Pigmentation and skin reaction to sun as risk factors for cutaneous melanoma: Western Canada Melanoma Study. Br Med J (Clin Res Ed). 1984; 288:99-102.
PubMed
 
Green A, Bain C, McLennan R, Siskind V.  Risk factors for cutaneous melanoma in Queensland. Gallagher RP Epidemiology of Malignant Melanoma. Heidelberg: Springer-Verlag; 1986; 76-97.
 
Osterlind A, Tucker MA, Hou-Jensen K, Stone BJ, Engholm G, Jensen OM.  The Danish case-control study of cutaneous malignant melanoma. I. Importance of host factors. Int J Cancer. 1988; 42:200-6.
PubMed
 
Solomon CC, White E, Kristal AR, Vaughan T.  Melanoma and lifetime UV radiation. Cancer Causes Control. 2004; 15:893-902.
PubMed
 
Veierød MB, Weiderpass E, Thörn M, Hansson J, Lund E, Armstrong B. et al.  A prospective study of pigmentation, sun exposure, and risk of cutaneous malignant melanoma in women. J Natl Cancer Inst. 2003; 95:1530-8.
PubMed
 
Walter SD, Marrett LD, From L, Hertzman C, Shannon HS, Roy P.  The association of cutaneous malignant melanoma with the use of sunbeds and sunlamps. Am J Epidemiol. 1990; 131:232-43.
PubMed
 
Westerdahl J, Olsson H, Måsbäck A, Ingvar C, Jonsson N, Brandt L. et al.  Use of sunbeds or sunlamps and malignant melanoma in southern Sweden. Am J Epidemiol. 1994; 140:691-9.
PubMed
 

Figures

Grahic Jump Location
Appendix Figure 1.
Analytic framework and key questions.

BCC = basal cell carcinoma; KQ = key question; SCC = squamous cell carcinoma.

Grahic Jump Location
Grahic Jump Location
Appendix Figure 2.
Summary of evidence search and selection.
Grahic Jump Location

Tables

Table Jump PlaceholderTable 1.  Search Strategies for Each Question Based on Existing Systematic Reviews
Table Jump PlaceholderAppendix Table 1.  Inclusion and Exclusion Criteria, by Key Question
Table Jump PlaceholderTable 2.  Effectiveness of Behavioral Counseling Interventions to Promote Sun-Protective Behaviors
Table Jump PlaceholderTable 3.  Association Between Sun Exposure, Indoor Tanning, or Sunscreen Use and Skin Cancer
Table Jump PlaceholderAppendix Table 2.  Associations Between Sun Exposure, Indoor Tanning, or Sunscreen Use and Skin Cancer (SCC, BCC, or Melanoma)

References

American Cancer Society.  Skin Cancer Facts. Accessed atwww.cancer.org/Cancer/CancerCauses/SunandUVExposure/skin-cancer-facts?sitearear+PED2008. on 10 December 2010.
 
Altekruse SF, Kosary CL, Krapcho M, Neyman N, Aminou R, Waldron W, et al.  SEER Cancer Statistics Review, 1975-2007, National Cancer Institute. Bethesda, MD. Accessed athttp://seer.cancer.gov/csr/1975_2007/on 14 December 2010.
 
Berwick M, Wiggins C.  The current epidemiology of cutaneous malignant melanoma. Front Biosci. 2006; 11:1244-54.
PubMed
CrossRef
 
Linos E, Swetter SM, Cockburn MG, Colditz GA, Clarke CA.  Increasing burden of melanoma in the United States. J Invest Dermatol. 2009; 129:1666-74.
PubMed
 
Purdue MP, Freeman LE, Anderson WF, Tucker MA.  Recent trends in incidence of cutaneous melanoma among US Caucasian young adults [Letter]. J Invest Dermatol. 2008; 128:2905-8.
PubMed
 
Gandini S, Sera F, Cattaruzza MS, Pasquini P, Zanetti R, Masini C. et al.  Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur J Cancer. 2005; 41:2040-59.
PubMed
 
Markovic SN, Erickson LA, Rao RD, Weenig RH, Pockaj BA, Bardia A, et al. Melanoma Study Group of the Mayo Clinic Cancer Center.  Malignant melanoma in the 21st century, part 1: epidemiology, risk factors, screening, prevention, and diagnosis. Mayo Clin Proc. 2007; 82:364-80.
PubMed
 
IARC Working Group Reports.  IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Solar and Ultraviolet Radiation. vol. 55. Lyon, France: IARCPress; 1992.
 
Balk SJ, O'Connor KG, Saraiya M.  Counseling parents and children on sun protection: a national survey of pediatricians. Pediatrics. 2004; 114:1056-64.
PubMed
 
Gritz ER, Tripp MK, deMoor CA, Eicher SA, Mueller NH, Spedale JH.  Skin cancer prevention counseling and clinical practices of pediatricians. Pediatr Dermatol. 2003; 20:16-24.
PubMed
 
Hornung RL, Hansen LA, Sharp LK, Poorsattar SP, Lipsky MS.  Skin cancer prevention in the primary care setting: assessment using a standardized patient. Pediatr Dermatol. 2007; 24:108-12.
PubMed
 
Kasparian , McLoone JK, Meiser B.  Skin cancer-related prevention and screening behaviors: a review of the literature. J Behav Med. 2009; 32:406-28.
PubMed
 
Geller AC, Colditz G, Oliveria S, Emmons K, Jorgensen C, Aweh GN. et al.  Use of sunscreen, sunburning rates, and tanning bed use among more than 10 000 US children and adolescents. Pediatrics. 2002; 109:1009-14.
PubMed
 
Coups EJ, Manne SL, Heckman CJ.  Multiple skin cancer risk behaviors in the U.S. population. Am J Prev Med. 2008; 34:87-93.
PubMed
 
Helfand M, Krages KP.  Counseling to Prevent Skin Cancer: A Summary of the Evidence. (AHRQ Pub. No. 03–521B). Rockville, MD: Agency for Healthcare Research and Quality; 2003.
 
www.ahrq.gov/clinic/uspstf08/methods/procmanual.htmU.S. Preventive Services Task Force.  U.S. Preventive Services Task Force Procedure Manual. (AHRQ Publication No. 08-05118-EF). Rockville, MD: Agency for Healthcare Research and Quality; 2008.
 
International Agency for Research on Cancer Working Group on artificial ultraviolet (UV) light and skin cancer.  The association of use of sunbeds with cutaneous malignant melanoma and other skin cancers: a systematic review. Int J Cancer. 2007; 120:1116-22.
PubMed
 
Dennis LK, BeaneFreeman LE, VanBeek MJ.  Sunscreen use and the risk for melanoma: a quantitative review. Ann Intern Med. 2003; 139:966-78.
PubMed
 
Elwood JM, Jopson J.  Melanoma and sun exposure: an overview of published studies. Int J Cancer. 1997; 73:198-203.
PubMed
 
English DR, Armstrong BK, Kricker A, Winter MG, Heenan PJ, Randell PL.  Demographic characteristics, pigmentary and cutaneous risk factors for squamous cell carcinoma of the skin: a case-control study. Int J Cancer. 1998; 76:628-34.
PubMed
 
Gallagher RP, Spinelli JJ, Lee TK.  Tanning beds, sunlamps, and risk of cutaneous malignant melanoma. Cancer Epidemiol Biomarkers Prev. 2005; 14:562-6.
PubMed
 
Gandini S, Sera F, Cattaruzza MS, Pasquini P, Abeni D, Boyle P. et al.  Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur J Cancer. 2005; 41:28-44.
PubMed
 
Gandini S, Sera F, Cattaruzza MS, Pasquini P, Picconi O, Boyle P. et al.  Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer. 2005; 41:45-60.
PubMed
 
Gorham ED, Mohr SB, Garland CF, Chaplin G, Garland FC.  Do sunscreens increase risk of melanoma in populations residing at higher latitudes? Ann Epidemiol. 2007; 17:956-63.
PubMed
 
Kricker A, Armstrong BK, English DR, Heenan PJ.  A dose-response curve for sun exposure and basal cell carcinoma. Int J Cancer. 1995; 60:482-8.
PubMed
 
Nelemans PJ, Rampen FH, Ruiter DJ, Verbeek AL.  An addition to the controversy on sunlight exposure and melanoma risk: a meta-analytical approach. J Clin Epidemiol. 1995; 48:1331-42.
PubMed
 
Oliveria SA, Saraiya M, Geller AC, Heneghan MK, Jorgensen C.  Sun exposure and risk of melanoma. Arch Dis Child. 2006; 91:131-8.
PubMed
 
Rosso S, Zanetti R, Pippione M, Sancho-Garnier H.  Parallel risk assessment of melanoma and basal cell carcinoma: skin characteristics and sun exposure. Melanoma Res. 1998; 8:573-83.
PubMed
 
Westerdahl J, Olsson H, Måsbäck A, Ingvar C, Jonsson N.  Is the use of sunscreens a risk factor for malignant melanoma? Melanoma Res. 1995; 5:59-65.
PubMed
 
Westerdahl J, Ingvar C, Måsbäck A, Jonsson N, Olsson H.  Risk of cutaneous malignant melanoma in relation to use of sunbeds: further evidence for UV-A carcinogenicity. Br J Cancer. 2000; 82:1593-9.
PubMed
 
Westerdahl J, Ingvar C, Mâsbäck A, Olsson H.  Sunscreen use and malignant melanoma. Int J Cancer. 2000; 87:145-50.
PubMed
 
Saraiya M, Glanz K, Briss PA, Nichols P, White C, Das D. et al.  Interventions to prevent skin cancer by reducing exposure to ultraviolet radiation: a systematic review. Am J Prev Med. 2004; 27:422-66.
PubMed
 
Huncharek M, Kupelnick B.  Use of topical sunscreens and the risk of malignant melanoma: a meta-analysis of 9067 patients from 11 case-control studies. Am J Public Health. 2002; 92:1173-7.
PubMed
 
Gefeller O, Pfahlberg A.  Sunscreen use and melanoma: a case of evidence-based prevention? Photodermatol Photoimmunol Photomed. 2002;18:153-6; discussion 156. [PMID: 12207681]
 
Grant WB.  A meta-analysis of second cancers after a diagnosis of nonmelanoma skin cancer: additional evidence that solar ultraviolet-B irradiance reduces the risk of internal cancers. J Steroid Biochem Mol Biol. 2007; 103:668-74.
PubMed
 
Autier P, Boniol M, Doré JF.  Sunscreen use and increased duration of intentional sun exposure: still a burning issue. Int J Cancer. 2007; 121:1-5.
PubMed
 
Lin JS, Eder M, Weinmann S, Zuber SP, Beil TL, Plaut D, et al.  Behavioral Counseling to Prevent Skin Cancer: Systematic Evidence Review to Update the 2003 U.S. Preventive Services Task Force Recommendation. Evidence Synthesis No. 82. AHRQ Publication No. 11-05152-EF-1. Rockville, MD: Agency for Healthcare Quality and Research; February 2011.
 
Bastuji-Garin S, Diepgen TL.  Cutaneous malignant melanoma, sun exposure, and sunscreen use: epidemiological evidence. Br J Dermatol. 2002; 146:Suppl 6124-30.
PubMed
 
Koepsell T, Weiss N.  Epidemiologic Methods: Studying the Occurence of Illness. New York: Oxford Univ Pr; 2003.
 
Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al.  The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Accessed atwww.ohri.ca/programs/clinical_epidemiology/oxford.htmon 10 December 2010.
 
Glazebrook C, Garrud P, Avery A, Coupland C, Williams H.  Impact of a multimedia intervention “Skinsafe” on patients' knowledge and protective behaviors. Prev Med. 2006; 42:449-54.
PubMed
 
Glanz K, Schoenfeld ER, Steffen A.  A randomized trial of tailored skin cancer prevention messages for adults: Project SCAPE. Am J Public Health. 2010; 100:735-41.
PubMed
 
Prochaska JO, Velicer WF, Redding C, Rossi JS, Goldstein M, DePue J. et al.  Stage-based expert systems to guide a population of primary care patients to quit smoking, eat healthier, prevent skin cancer, and receive regular mammograms. Prev Med. 2005; 41:406-16.
PubMed
 
Prochaska JO, Velicer WF, Rossi JS, Redding CA, Greene GW, Rossi SR. et al.  Multiple risk expert systems interventions: impact of simultaneous stage-matched expert system interventions for smoking, high-fat diet, and sun exposure in a population of parents. Health Psychol. 2004; 23:503-16.
PubMed
 
Geller AC, Emmons KM, Brooks DR, Powers C, Zhang Z, Koh HK. et al.  A randomized trial to improve early detection and prevention practices among siblings of melanoma patients. Cancer. 2006; 107:806-14.
PubMed
 
Hillhouse J, Turrisi R, Stapleton J, Robinson J.  A randomized controlled trial of an appearance-focused intervention to prevent skin cancer. Cancer. 2008; 113:3257-66.
PubMed
 
Mahler HI, Kulik JA, Gerrard M, Gibbons FX.  Long-term effects of appearance-based interventions on sun protection behaviors. Health Psychol. 2007; 26:350-60.
PubMed
 
Stapleton J, Turrisi R, Hillhouse J, Robinson JK, Abar B.  A comparison of the efficacy of an appearance-focused skin cancer intervention within indoor tanner subgroups identified by latent profile analysis. J Behav Med. 2010; 33:181-90.
PubMed
 
Turrisi R, Mastroleo NR, Stapleton J, Mallett K.  A comparison of 2 brief intervention approaches to reduce indoor tanning behavior in young women who indoor tan very frequently [Letter]. Arch Dermatol. 2008; 144:1521-4.
PubMed
 
Norman GJ, Adams MA, Calfas KJ, Covin J, Sallis JF, Rossi JS. et al.  A randomized trial of a multicomponent intervention for adolescent sun protection behaviors. Arch Pediatr Adolesc Med. 2007; 161:146-52.
PubMed
 
Crane LA, Deas A, Mokrohisky ST, Ehrsam G, Jones RH, Dellavalle R. et al.  A randomized intervention study of sun protection promotion in well-child care. Prev Med. 2006; 42:162-70.
PubMed
 
van Dam RM, Huang Z, Rimm EB, Weinstock MA, Spiegelman D, Colditz GA. et al.  Risk factors for basal cell carcinoma of the skin in men: results from the health professionals follow-up study. Am J Epidemiol. 1999; 150:459-68.
PubMed
 
Neale RE, Davis M, Pandeya N, Whiteman DC, Green AC.  Basal cell carcinoma on the trunk is associated with excessive sun exposure. J Am Acad Dermatol. 2007; 56:380-6.
PubMed
 
Green A, Battistutta D, Hart V, Leslie D, Weedon D.  Skin cancer in a subtropical Australian population: incidence and lack of association with occupation. The Nambour Study Group. Am J Epidemiol. 1996; 144:1034-40.
PubMed
 
Grodstein F, Speizer FE, Hunter DJ.  A prospective study of incident squamous cell carcinoma of the skin in the Nurses' Health Study. J Natl Cancer Inst. 1995; 87:1061-6.
PubMed
 
Hunter DJ, Colditz GA, Stampfer MJ, Rosner B, Willett WC, Speizer FE.  Risk factors for basal cell carcinoma in a prospective cohort of women. Ann Epidemiol. 1990; 1:13-23.
PubMed
 
Han J, Colditz GA, Hunter DJ.  Risk factors for skin cancers: a nested case-control study within the Nurses' Health Study. Int J Epidemiol. 2006; 35:1514-21.
PubMed
 
Kricker A, Armstrong BK, English DR, Heenan PJ.  Pigmentary and cutaneous risk factors for non-melanocytic skin cancer—a case-control study. Int J Cancer. 1991; 48:650-62.
PubMed
 
Rosso S, Joris F, Zanetti R.  Risk of basal and squamous cell carcinomas of the skin in Sion, Switzerland: a case-control study. Tumori. 1999; 85:435-42.
PubMed
 
Chen YC, Christiani DC, Su HJ, Hsueh YM, Smith TJ, Ryan LM. et al.  Early-life or lifetime sun exposure, sun reaction, and the risk of squamous cell carcinoma in an Asian population. Cancer Causes Control. 2010; 21:771-6.
PubMed
 
Gallagher RP, Hill GB, Bajdik CD, Coldman AJ, Fincham S, McLean DI. et al.  Sunlight exposure, pigmentation factors, and risk of nonmelanocytic skin cancer. II. Squamous cell carcinoma. Arch Dermatol. 1995; 131:164-9.
PubMed
 
Gallagher RP, Hill GB, Bajdik CD, Fincham S, Coldman AJ, McLean DI. et al.  Sunlight exposure, pigmentary factors, and risk of nonmelanocytic skin cancer. I. Basal cell carcinoma. Arch Dermatol. 1995; 131:157-63.
PubMed
 
Vlajinac HD, Adanja BJ, Lazar ZF, Bogavac AN, Bjekić MD, Marinkovic JM. et al.  Risk factors for basal cell carcinoma. Acta Oncol. 2000; 39:611-6.
PubMed
 
Veierød MB, Adami HO, Lund E, Armstrong BK, Weiderpass E.  Sun and solarium exposure and melanoma risk: effects of age, pigmentary characteristics, and nevi. Cancer Epidemiol Biomarkers Prev. 2010; 19:111-20.
PubMed
 
Berwick M, Begg CB, Fine JA, Roush GC, Barnhill RL.  Screening for cutaneous melanoma by skin self-examination. J Natl Cancer Inst. 1996; 88:17-23.
PubMed
 
Fargnoli MC, Piccolo D, Altobelli E, Formicone F, Chimenti S, Peris K.  Constitutional and environmental risk factors for cutaneous melanoma in an Italian population. A case-control study. Melanoma Res. 2004; 14:151-7.
PubMed
 
Green AC, O'Rourke MG.  Cutaneous malignant melanoma in association with other skin cancers. J Natl Cancer Inst. 1985; 74:977-80.
PubMed
 
Holly EA, Aston DA, Cress RD, Ahn DK, Kristiansen JJ.  Cutaneous melanoma in women. I. Exposure to sunlight, ability to tan, and other risk factors related to ultraviolet light. Am J Epidemiol. 1995; 141:923-33.
PubMed
 
Gallagher RP, Elwood JM, Hill GB.  Risk factors for cutaneous malignant melanoma: the Western Canada Melanoma Study. Recent Results Cancer Res. 1986; 102:38-55.
PubMed
 
Zanetti R, Franceschi S, Rosso S, Colonna S, Bidoli E.  Cutaneous melanoma and sunburns in childhood in a southern European population. Eur J Cancer. 1992; 28A:1172-6.
PubMed
 
Le Marchand L, Saltzman BS, Hankin JH, Wilkens LR, Franke AA, Morris SJ. et al.  Sun exposure, diet, and melanoma in Hawaii Caucasians. Am J Epidemiol. 2006; 164:232-45.
PubMed
 
Osterlind A, Tucker MA, Stone BJ, Jensen OM.  The Danish case-control study of cutaneous malignant melanoma. II. Importance of UV-light exposure. Int J Cancer. 1988; 42:319-24.
PubMed
 
Parr CL, Hjartåker A, Laake P, Lund E, Veierød MB.  Recall bias in melanoma risk factors and measurement error effects: a nested case-control study within the Norwegian Women and Cancer Study. Am J Epidemiol. 2009; 169:257-66.
PubMed
 
Walter SD, King WD, Marrett LD.  Association of cutaneous malignant melanoma with intermittent exposure to ultraviolet radiation: results of a case-control study in Ontario, Canada. Int J Epidemiol. 1999; 28:418-27.
PubMed
 
Weinstock MA, Colditz GA, Willett WC, Stampfer MJ, Bronstein BR, Mihm MC Jr. et al.  Melanoma and the sun: the effect of swimsuits and a “healthy” tan on the risk of nonfamilial malignant melanoma in women. Am J Epidemiol. 1991; 134:462-70.
PubMed
 
Westerdahl J, Olsson H, Ingvar C.  At what age do sunburn episodes play a crucial role for the development of malignant melanoma. Eur J Cancer. 1994; 30A:1647-54.
PubMed
 
Garbe C, Krüger S, Stadler R, Guggenmoos-Holzmann I, Orfanos CE.  Markers and relative risk in a German population for developing malignant melanoma. Int J Dermatol. 1989; 28:517-23.
PubMed
 
Nagore E, Hueso L, Botella-Estrada R, Alfaro-Rubio A, Serna I, Guallar J. et al.  Smoking, sun exposure, number of nevi and previous neoplasias are risk factors for melanoma in older patients (60 years and over). J Eur Acad Dermatol Venereol. 2010; 24:50-7.
PubMed
 
Tabenkin H, Tamir A, Sperber AD, Shapira M, Shvartzman P.  A case-control study of malignant melanoma in Israeli kibbutzim. Isr Med Assoc J. 1999; 1:154-7.
PubMed
 
White E, Kirkpatrick CS, Lee JA.  Case-control study of malignant melanoma in Washington State. I. Constitutional factors and sun exposure. Am J Epidemiol. 1994; 139:857-68.
PubMed
 
Shors AR, Solomon C, McTiernan A, White E.  Melanoma risk in relation to height, weight, and exercise (United States). Cancer Causes Control. 2001; 12:599-606.
PubMed
 
Karagas MR, Stannard VA, Mott LA, Slattery MJ, Spencer SK, Weinstock MA.  Use of tanning devices and risk of basal cell and squamous cell skin cancers. J Natl Cancer Inst. 2002; 94:224-6.
PubMed
 
Clough-Gorr KM, Titus-Ernstoff L, Perry AE, Spencer SK, Ernstoff MS.  Exposure to sunlamps, tanning beds, and melanoma risk. Cancer Causes Control. 2008; 19:659-69.
PubMed
 
Bataille V, Boniol M, DeVries E, Severi G, Brandberg Y, Sasieni P. et al.  A multicentre epidemiological study on sunbed use and cutaneous melanoma in Europe. Eur J Cancer. 2005; 41:2141-9.
PubMed
 
Green A, Williams G, Neale R, Hart V, Leslie D, Parsons P. et al.  Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: a randomised controlled trial. Lancet. 1999; 354:723-9.
PubMed
 
Cho E, Rosner BA, Feskanich D, Colditz GA.  Risk factors and individual probabilities of melanoma for whites. J Clin Oncol. 2005; 23:2669-75.
PubMed
 
Green A, Battistutta D, Hart V, Leslie D, Marks G, Williams G. et al.  The Nambour Skin Cancer and Actinic Eye Disease Prevention Trial: design and baseline characteristics of participants. Control Clin Trials. 1994; 15:512-22.
PubMed
 
Pandeya N, Purdie DM, Green A, Williams G.  Repeated occurrence of basal cell carcinoma of the skin and multifailure survival analysis: follow-up data from the Nambour Skin Cancer Prevention Trial. Am J Epidemiol. 2005; 161:748-54.
PubMed
 
van der Pols JC, Williams GM, Pandeya N, Logan V, Green AC.  Prolonged prevention of squamous cell carcinoma of the skin by regular sunscreen use. Cancer Epidemiol Biomarkers Prev. 2006; 15:2546-8.
PubMed
 
Chen YT, Dubrow R, Zheng T, Barnhill RL, Fine J, Berwick M.  Sunlamp use and the risk of cutaneous malignant melanoma: a population-based case-control study in Connecticut, USA. Int J Epidemiol. 1998; 27:758-65.
PubMed
 
Kricker A, Armstrong BK, English DR, Heenan PJ.  Does intermittent sun exposure cause basal cell carcinoma? a case-control study in Western Australia. Int J Cancer. 1995; 60:489-94.
PubMed
 
Milne E, Simpson JA, Johnston R, Giles-Corti B, English DR.  Time spent outdoors at midday and children's body mass index. Am J Public Health. 2007; 97:306-10.
PubMed
 
Autier P, Doré JF, Négrier S, Liénard D, Panizzon R, Lejeune FJ. et al.  Sunscreen use and duration of sun exposure: a double-blind, randomized trial. J Natl Cancer Inst. 1999; 91:1304-9.
PubMed
 
Autier P, Doré JF, Reis AC, Grivegnée A, Ollivaud L, Truchetet F. et al.  Sunscreen use and intentional exposure to ultraviolet A and B radiation: a double blind randomized trial using personal dosimeters. Br J Cancer. 2000; 83:1243-8.
PubMed
 
Dupuy A, Dunant A, Grob JJ, Réseau d'Epidémiologie en Dermatologie.  Randomized controlled trial testing the impact of high-protection sunscreens on sun-exposure behavior. Arch Dermatol. 2005; 141:950-6.
PubMed
 
Marks R, Foley PA, Jolley D, Knight KR, Harrison J, Thompson SC.  The effect of regular sunscreen use on vitamin D levels in an Australian population. Results of a randomized controlled trial. Arch Dermatol. 1995; 131:415-21.
PubMed
 
Brot C, Vestergaard P, Kolthoff N, Gram J, Hermann AP, Sørensen OH.  Vitamin D status and its adequacy in healthy Danish perimenopausal women: relationships to dietary intake, sun exposure and serum parathyroid hormone. Br J Nutr. 2001; 86:Suppl 1S97-103.
PubMed
 
John EM, Schwartz GG, Dreon DM, Koo J.  Vitamin D and breast cancer risk: the NHANES I Epidemiologic follow-up study, 1971-1975 to 1992. National Health and Nutrition Examination Survey. Cancer Epidemiol Biomarkers Prev. 1999; 8:399-406.
PubMed
 
Kampman E, Slattery ML, Caan B, Potter JD.  Calcium, vitamin D, sunshine exposure, dairy products and colon cancer risk (United States). Cancer Causes Control. 2000; 11:459-66.
PubMed
 
Hughes AM, Armstrong BK, Vajdic CM, Turner J, Grulich A, Fritschi L. et al.  Pigmentary characteristics, sun sensitivity and non-Hodgkin lymphoma. Int J Cancer. 2004; 110:429-34.
PubMed
 
Hughes AM, Armstrong BK, Vajdic CM, Turner J, Grulich AE, Fritschi L. et al.  Sun exposure may protect against non-Hodgkin lymphoma: a case-control study. Int J Cancer. 2004; 112:865-71.
PubMed
 
Smedby KE, Hjalgrim H, Melbye M, Torrång A, Rostgaard K, Munksgaard L. et al.  Ultraviolet radiation exposure and risk of malignant lymphomas. J Natl Cancer Inst. 2005; 97:199-209.
PubMed
 
John EM, Schwartz GG, Koo J, Van Den Berg D, Ingles SA.  Sun exposure, vitamin D receptor gene polymorphisms, and risk of advanced prostate cancer. Cancer Res. 2005; 65:5470-9.
PubMed
 
Hartge P, Lim U, Freedman DM, Colt JS, Cerhan JR, Cozen W. et al.  Ultraviolet radiation, dietary vitamin D, and risk of non-Hodgkin lymphoma (United States). Cancer Causes Control. 2006; 17:1045-52.
PubMed
 
John EM, Schwartz GG, Koo J, Wang W, Ingles SA.  Sun exposure, vitamin D receptor gene polymorphisms, and breast cancer risk in a multiethnic population. Am J Epidemiol. 2007; 166:1409-19.
PubMed
 
Patrick K, Calfas KJ, Norman GJ, Zabinski MF, Sallis JF, Rupp J. et al.  Randomized controlled trial of a primary care and home-based intervention for physical activity and nutrition behaviors: PACE+ for adolescents. Arch Pediatr Adolesc Med. 2006; 160:128-36.
PubMed
 
Rosenberg DE, Norman GJ, Sallis JF, Calfas KJ, Patrick K.  Covariation of adolescent physical activity and dietary behaviors over 12 months. J Adolesc Health. 2007; 41:472-8.
PubMed
 
Autier P, Severi G, Doré JF.  Betacarotene and sunscreen use [Letter]. Lancet. 1999; 354:2163-4.
PubMed
 
Gallagher RP, Rivers JK, Lee TK, Bajdik CD, McLean DI, Coldman AJ.  Broad-spectrum sunscreen use and the development of new nevi in white children: A randomized controlled trial. JAMA. 2000; 283:2955-60.
PubMed
 
Bauer J, Büttner P, Wiecker TS, Luther H, Garbe C.  Interventional study in 1,232 young German children to prevent the development of melanocytic nevi failed to change sun exposure and sun protective behavior. Int J Cancer. 2005; 116:755-61.
PubMed
 
Burgaz A, Akesson A, Michaëlsson K, Wolk A.  25-hydroxyvitamin D accumulation during summer in elderly women at latitude 60 degrees N. J Intern Med. 2009; 266:476-83.
PubMed
 
Glanz K, Yaroch AL, Dancel M, Saraiya M, Crane LA, Buller DB. et al.  Measures of sun exposure and sun protection practices for behavioral and epidemiologic research. Arch Dermatol. 2008; 144:217-22.
PubMed
 
Lazovich D, Stryker JE, Mayer JA, Hillhouse J, Dennis LK, Pichon L. et al.  Measuring nonsolar tanning behavior: indoor and sunless tanning. Arch Dermatol. 2008; 144:225-30.
PubMed
 
IARC Working Group Reports.  Vitamin D and Cancer. vol. 5. Lyon, France: International Agency for Research on Cancer; 2008.
 
Chang YM, Barrett JH, Bishop DT, Armstrong BK, Bataille V, Bergman W. et al.  Sun exposure and melanoma risk at different latitudes: a pooled analysis of 5700 cases and 7216 controls. Int J Epidemiol. 2009; 38:814-30.
PubMed
 
Worswick SD, Cockburn M, Peng D.  Measurement of ultraviolet exposure in epidemiological studies of skin and skin cancers. Photochem Photobiol. 2008; 84:1462-72.
PubMed
 
Bajdik CD, Gallagher RP, Astrakianakis G, Hill GB, Fincham S, McLean DI.  Non-solar ultraviolet radiation and the risk of basal and squamous cell skin cancer. Br J Cancer. 1996; 73:1612-4.
PubMed
 
English DR, Armstrong BK, Kricker A, Winter MG, Heenan PJ, Randell PL.  Case-control study of sun exposure and squamous cell carcinoma of the skin. Int J Cancer. 1998; 77:347-53.
PubMed
 
Lea CS, Scotto JA, Buffler PA, Fine J, Barnhill RL, Berwick M.  Ambient UVB and melanoma risk in the United States: a case-control analysis. Ann Epidemiol. 2007; 17:447-53.
PubMed
 
Chen YT, Dubrow R, Holford TR, Zheng T, Barnhill RL, Fine J. et al.  Malignant melanoma risk factors by anatomic site: a case-control study and polychotomous logistic regression analysis. Int J Cancer. 1996; 67:636-43.
PubMed
 
Elwood JM, Gallagher RP, Hill GB, Pearson JC.  Cutaneous melanoma in relation to intermittent and constant sun exposure—the Western Canada Melanoma Study. Int J Cancer. 1985; 35:427-33.
PubMed
 
Elwood JM, Gallagher RP, Hill GB, Spinelli JJ, Pearson JC, Threlfall W.  Pigmentation and skin reaction to sun as risk factors for cutaneous melanoma: Western Canada Melanoma Study. Br Med J (Clin Res Ed). 1984; 288:99-102.
PubMed
 
Green A, Bain C, McLennan R, Siskind V.  Risk factors for cutaneous melanoma in Queensland. Gallagher RP Epidemiology of Malignant Melanoma. Heidelberg: Springer-Verlag; 1986; 76-97.
 
Osterlind A, Tucker MA, Hou-Jensen K, Stone BJ, Engholm G, Jensen OM.  The Danish case-control study of cutaneous malignant melanoma. I. Importance of host factors. Int J Cancer. 1988; 42:200-6.
PubMed
 
Solomon CC, White E, Kristal AR, Vaughan T.  Melanoma and lifetime UV radiation. Cancer Causes Control. 2004; 15:893-902.
PubMed
 
Veierød MB, Weiderpass E, Thörn M, Hansson J, Lund E, Armstrong B. et al.  A prospective study of pigmentation, sun exposure, and risk of cutaneous malignant melanoma in women. J Natl Cancer Inst. 2003; 95:1530-8.
PubMed
 
Walter SD, Marrett LD, From L, Hertzman C, Shannon HS, Roy P.  The association of cutaneous malignant melanoma with the use of sunbeds and sunlamps. Am J Epidemiol. 1990; 131:232-43.
PubMed
 
Westerdahl J, Olsson H, Måsbäck A, Ingvar C, Jonsson N, Brandt L. et al.  Use of sunbeds or sunlamps and malignant melanoma in southern Sweden. Am J Epidemiol. 1994; 140:691-9.
PubMed
 

Letters

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Comments

Submit a Comment
Submit a Comment

Summary for Patients

Clinical Slide Sets

Terms of Use

The In the Clinic® slide sets are owned and copyrighted by the American College of Physicians (ACP). All text, graphics, trademarks, and other intellectual property incorporated into the slide sets remain the sole and exclusive property of the ACP. The slide sets may be used only by the person who downloads or purchases them and only for the purpose of presenting them during not-for-profit educational activities. Users may incorporate the entire slide set or selected individual slides into their own teaching presentations but may not alter the content of the slides in any way or remove the ACP copyright notice. Users may make print copies for use as hand-outs for the audience the user is personally addressing but may not otherwise reproduce or distribute the slides by any means or media, including but not limited to sending them as e-mail attachments, posting them on Internet or Intranet sites, publishing them in meeting proceedings, or making them available for sale or distribution in any unauthorized form, without the express written permission of the ACP. Unauthorized use of the In the Clinic slide sets will constitute copyright infringement.

Toolkit

Want to Subscribe?

Learn more about subscription options

Advertisement
Related Articles
Related Point of Care
Topic Collections
PubMed Articles
Forgot your password?
Enter your username and email address. We'll send you a reminder to the email address on record.
(Required)
(Required)