0
Reviews |

Stereotactic Body Radiation Therapy: Scope of the Literature FREE

Kelley Tipton, MPH; Jason H. Launders, MSc; Rohit Inamdar, MSc, DABR; Curtis Miyamoto, MD; and Karen Schoelles, MD, SM
[+] Article and Author Information

From the ECRI Institute Evidence-based Practice Center, Plymouth Meeting, and Temple University Hospital, Philadelphia, Pennsylvania.


Disclaimer: The authors of this report are responsible for its content. Statements in the report should not be construed as endorsements by the Agency for Healthcare Research and Quality or the U.S. Department of Health and Human Services.

Acknowledgment: The authors thank Eileen Erinoff, MSLIS, and Helen Dunn for providing literature retrieval and documentation management support and Lydia Dharia and Katherine Donahue for their assistance with the preparation of the technical brief.

Financial Support: This project was supported by the ECRI Institute Evidence-based Practice Center with funding from the Agency for Healthcare Research and Quality under contract 290-02-0019, U.S. Department of Health and Human Services.

Potential Conflicts of Interest: Disclosures can be viewed at www.acponline.org/authors/icmje/ConflictOfInterestForms.do?msNum=M10-2598.

Requests for Single Reprints: Karen Schoelles, MD, SM, Evidence-based Practice Center, ECRI Institute, 5200 Butler Pike, Plymouth Meeting, PA 19462-1298; email, kschoelles@ecri.org.

Current Author Addresses: Ms. Tipton and Dr. Schoelles: Evidence-based Practice Center, ECRI Institute, 5200 Butler Pike, Plymouth Meeting, PA 19462-1298.

Mr. Launders and Mr. Inamdar: ECRI Institute, 5200 Butler Pike, Plymouth Meeting, PA 19462-1298.

Dr. Miyamoto: Department of Radiation Oncology, Temple University School of Medicine, Temple University Hospital, 3401 North Broad Street, Philadelphia, PA 19140.

Author Contributions: Conception and design: K. Tipton, K. Schoelles.

Analysis and interpretation of the data: K. Tipton, J.H. Launders, C. Miyamoto, K. Schoelles.

Drafting of the article: K. Tipton, C. Miyamoto, K. Schoelles.

Critical revision of the article for important intellectual content: K. Tipton, J.H. Launders, R. Inamdar, C. Miyamoto, K. Schoelles.

Final approval of the article: C. Miyamoto, K. Schoelles.

Obtaining of funding: K. Schoelles.

Administrative, technical, or logistic support: J.H. Launders, K. Schoelles.

Collection and assembly of data: K. Tipton.


Ann Intern Med. 2011;154(11):737-745. doi:10.7326/0003-4819-154-11-201106070-00343
Text Size: A A A

Stereotactic body radiation therapy (SBRT) is derived from the techniques of stereotactic radiosurgery used to treat lesions in the brain and spine. It combines multiple finely collimated radiation beams and stereotaxy to deliver a high dose of radiation to an extracranial target in the body in a single dose or a few fractions.

This review provides a broad overview of the current state of SBRT for solid malignant tumors. Reviewers identified a total of 124 relevant studies. To our knowledge, no published comparative studies address the relative effectiveness and safety of SBRT versus other forms of external-beam radiation therapy. Stereotactic body radiation therapy seems to be widely diffused as a treatment of various types of cancer, although most studies have focused only on its use for treating thoracic tumors.

Comparative studies are needed to provide evidence that the theoretical advantages of SBRT over other radiation therapies actually occur in the clinical setting; this area is currently being studied in only 1 small trial.

Key Summary Points

  • Advances in planning and delivering radiation treatment have led to greater interest and capabilities to treat smaller and hard-to-target tumors while reducing treatment time.

  • Stereotactic body radiation therapy (SBRT) is typically delivered in 1 to 5 fractions, with a typical total dose of 20 to 60 Gy.

  • Stereotactic body radiation therapy seems to be widely used for treating various types of cancer, although most studies have focused only on its use to treat thoracic tumors. Fewer than 10 studies each for tumors of the pancreas, liver, colon, uterus, pelvis, sacrum, kidney, and prostate were found in this technical brief.

  • The American Association of Physicists in Medicine Task Group on SBRT has emphasized the importance of having well-trained and dedicated staff for providing SBRT in a safe environment.

  • No published comparative studies address the relative effectiveness and safety of SBRT versus other forms of external-beam radiation therapy. Only 1 small, ongoing trial is making such a comparison.

  • Comparative studies are needed to provide evidence that the theoretical advantages of SBRT over other radiotherapies actually occur in the clinical setting.

  • Future studies may help to determine the optimal number of radiation fractions, minimum and maximum doses per fraction, maximum number and diameter of lesions for various locations, and radiobiological explanations for the efficacy of SBRT.

Radiation has been used for the treatment of cancer since 1896, shortly after Roentgen's discovery of x-rays. External-beam radiation therapy is the most common method of radiation delivery; brachytherapy (placement of radioactive materials in or adjacent to the tumor) is another common method. Before external-beam radiation therapy, the target lesion is defined on imaging studies; a simulation is constructed; and a treatment plan is generated by radiation oncologists, dosimetrists, and radiation physicists. The use of 3-dimensional imaging techniques, such as computed tomography, positron emission tomography, or magnetic resonance imaging, for treatment simulation and planning has improved the accuracy of external-beam radiation therapy.

The software used in planning treatment incorporates data from the 3-dimensional images to more precisely define the target, normal tissues, and the isocenter at which the radiation will be delivered most intensely. Images taken at different times can be incorporated into the planning algorithms to account for movement of the target and surrounding structures during treatment, such as with respiration—this is called 4-dimensional conformal radiation therapy(1).

Another advance in the delivery of radiation is improved shaping of the radiation beam delivered to the tumor by using multileaf collimator systems located in the linear accelerator (linac). The multileaf collimator consists of multiple metal “leaves” that can be adjusted individually to shape the radiation beam to the contour of the tumor. Methods for reducing movement of the patient on the treatment table and of the tumor during treatment have also improved the accuracy of radiation delivery. For treatment of areas in the body, immobilization is accomplished by using abdominal-compression devices, vacuum pillows, masks, and stereotactic frames that fit tightly around the patient and are fixed to the treatment table.

Some delivery devices can track the position of the tumor and surrounding structures during the treatment, using implanted fiducials (radio-opaque markers), skin markers, or bony structures as reference points. A more recent trend is the use of image-guided radiation therapy before (or during) a treatment session to assess changes in the movement or shape of the tumor and the accuracy of delivery in real time. Digital orthogonal radiography is commonly done at the time of treatment, and results are compared with computed tomography–generated digital radiographs.

The improved ability to shape the radiation beam and spare surrounding tissues has led to a greater interest in reducing the number of fractions over which treatment is delivered. Treatment with 3-dimensional conformal radiation therapy or intensity-modulated radiation therapy is typically divided into 25 to 50 fractions (approximately 2 Gy per fraction) delivered 5 days per week for approximately 5 to 10 weeks. Stereotactic radiosurgery, in contrast, delivers a high dose of radiation to cranial tumors in a single session. Stereotactic body radiation therapy is typically delivered in 1 to 5 fractions, with a typical total dose of 20 to 60 Gy. The Figure shows a device with SBRT capabilities.

Grahic Jump Location
Figure.
A linear accelerator–based stereotactic radiosurgery and stereotactic body radiation therapy system.

The system incorporates a high-definition, 120-leaf multileaf collimator; robotic couch; cone-beam computed tomography; and stereoradiograph target–verification system. (Photo courtesy of Varian Medical Systems, Palo Alto, California. All rights reserved.)

Grahic Jump Location

As of September 2009, we had identified 384 facilities listed in the AHA Guide to the Health Care Field 2009 Edition(2) that specifically stated their capacity to provide SBRT. Lanni and colleagues (3) compared the hospital charges for technical and professional treatment with SBRT with those of intensity-modulated radiation therapy and standard fractionated radiation therapy for medically inoperable non–small cell lung cancer (NSCLC) on the basis of the average number of delivered fractions (3). The average charge was $55 705 for 35 fractions of 3-dimensional conformal radiation therapy, $146 570 for 35 fractions of intensity-modulated radiation therapy, and $52 471 for 4 fractions of SBRT (3). The expected Medicare reimbursements (based on the 2010 Ambulatory Payment Classification) for the respective therapies were $13 639, $22 747, and $10 616 (3).

The Agency for Healthcare Research and Quality Effective Health Care Program requested a technical brief on SBRT. A technical brief is not intended to assess comparative effectiveness, but to provide an overview of key issues related to an emerging diagnostic or therapeutic technology. The goal of this technical brief is to provide a broad overview of the current state of SBRT for solid malignant tumors. Although some authors and organizations include treatment of lesions in the spine as a form of SBRT, others consider this stereotactic radiosurgery. Several terms have been used to describe SBRT in the published literature, such as stereotactic radiotherapy, fractionated stereotactic radiosurgery, hypofractionated stereotactic radiosurgery, and staged radiosurgery. For the purposes of this review, we will use the term SBRT and will not discuss treatment of spinal lesions. Other terms used in this article are defined in the Glossary.

Protocol

The protocol for the technical brief was developed in conjunction with the Agency for Healthcare Research and Quality. The protocol for the literature scan was developed by the ECRI Institute Evidence-based Practice Center, Plymouth Meeting, Pennsylvania, with input from ECRI Institute's medical physicists. Peer and public review of an early draft of the technical brief led to changes in terminology and scope based on recent consensus definitions. Proton, electron, and carbon ion therapy are outside the scope of this technical brief.

Search Strategy

We searched for published English-language studies by using the Ovid platform in MEDLINE; EMBASE; and Cochrane databases, including the Health Technology Assessment Database, from January 2000 to December 2010. Search terms included (but were not limited to) hypofractionated, stereotaxis, stereotactic, and single-fraction and text and Medical Subject Heading terms for cancer and devices. The full search strategy can be found in Appendix Tables 1 and 2.

Table Jump PlaceholderAppendix Table 1.  Electronic Database Searches
Table Jump PlaceholderAppendix Table 2.  Search Strings

We used Google to search for gray literature applicable to the background information, descriptions of instrumentation and accessories, and utilization. We separately searched Windhover Online, Healthcare News, The Gray Sheet, The Wall Street Journal, and Clinica. We visited the Web sites of related professional association and organizations (for example, the International RadioSurgery Association). We found information on instrumentation by searching manufacturers' Web sites and the U.S. Food and Drug Administration's Center for Devices and Radiological Health Web site (www.fda.gov/cdrh). Instrumentation information can be found in Supplement 1. We obtained additional information on device specifications and compatible accessories through interviews with manufacturers (available in the full report [4]).

Study Selection

Two reviewers screened abstracts and full-text articles, and a third reviewer assisted with disagreements. Eligible studies were clinical studies of any design; were published in English; had at least 3 patients with solid malignant tumors in the body (excluding head and spine) who received SBRT in 10 or fewer fractions; and reported any clinical outcomes, adverse events, or both. Studies not eligible for data extraction included those on treatment planning (for example, dosing) and treatment delivery (for example, accuracy) that did not report patient outcomes. A detailed list of the excluded articles and primary reason for exclusion can be found in the full report (4).

Data Extraction

We created standardized data extraction forms, and 2 reviewers entered data into the SRS 4.0 database (Mobius Analytics, Ottawa, Ontario, Canada). The information extracted (if reported) included cancer type, inclusion or exclusion criteria, patient outcomes, adverse events or harms, study design characteristics, treatment characteristics, patient characteristics, instrumentation, algorithms, and quality assurance or training procedures.

Data Analysis and Synthesis

We performed descriptive statistics for patient characteristics and length of follow-up. We described study types, patient populations, prior or concurrent treatment, devices and algorithms used, outcomes assessed, patient selection criteria reported by the studies, and adverse events.

Role of the Funding Source

The ECRI Institute Evidence-based Practice Center prepared this report, with funding from the Agency for Healthcare Research and Quality. Staff from the Agency for Healthcare Research and Quality participated in the formulation of the research questions and reviewed the methods and the draft report but were not involved in study selection, data extraction, or drafting of the manuscript for publication.

Of the 5585 citations screened, 124 relevant studies were identified. These studies are summarized by cancer type in Appendix Table 3, and the study selection process is shown in the Appendix Figure.

Table Jump PlaceholderAppendix Table 3.  Summary of SBRT Studies, by Cancer Type
Grahic Jump Location
Appendix Figure.
Summary of evidence search and selection.
Grahic Jump Location
Tumor Sites Where SBRT Has Been Used

The tumor sites most commonly represented in the included studies were the lung or thorax (n = 68). We found 27 studies of tumors in the pancreas, liver, and colon and fewer than 10 studies each of tumors in the uterus, pelvis, kidney, thyroid, and prostate. Ten studies included patients with various treatment sites.

Radiation, Instrumentation, and Algorithms Used

Photon radiation was used in all of the included studies. The instrumentations most frequently reported included modified linacs, CyberKnife (Accuray, Sunnyvale, California), Novalis Shaped Beam or Clinac (Varian Medical Systems, Palo Alto, California), TomoTherapy Hi-ART (TomoTherapy, Madison, Wisconsin), a fusion of computed tomography and linac, and the Synergy system (Elekta, Stockholm, Sweden).

Most studies described the treatment-planning techniques and treatment-delivery processes. Studies reported the use of 1 to 12 coplanar or noncoplanar radiation beams for treatment. Various body-immobilization techniques were used, including the Alpha Cradle (Smithers Medical, North Canton, Ohio) and the Stereotactic Body Frame (Elekta).

Computed tomography, magnetic resonance imaging, and positron emission tomography were often used to plan treatment. Treatment planning was conducted on software systems that typically were specific to the device used during treatment. Breath-holding, respiratory gating, and abdominal-compression techniques were used to control for respiratory movement. Finally, the type of image guidance (megavoltage or kilovoltage) used during treatment (that is, just before treatment began) included computed tomography, cone-beam computed tomography, and orthogonal radiography.

Doses and fractions of SBRT varied on the basis of such factors as the type of cancer and location of the tumor. Most published studies described delivery in 1 to 5 fractions; however, 14 studies delivered treatment in more than 5 fractions but still referred to this as SBRT (518).

Study Design, Study Size, and Follow-up

We identified 67 prospective single-group studies (Supplement 2) and 57 retrospective single-group studies (Supplement 3) of SBRT that met our inclusion criteria. The 2 categories of tumor sites with the most studies and patients were the lung or thorax, with 68 studies and 4418 patients, and gastrointestinal sites (colon, liver, or pancreas), with 27 studies and 1281 patients (Appendix Table 3). The shortest mean and median follow-ups were in the studies of multiple cancer sites (8.2 and 12.9 months, respectively; range, 1 to 95 months). Studies of tumors involving the pelvis, sacrum, and uterus had the longest mean and median follow-ups (31 and 33 months, respectively; range, 2 to 77 months).

Comparator Used in Comparative Studies

None of the included studies compared SBRT with another form of radiation treatment. We searched ClinicalTrials.gov and identified 50 ongoing SBRT trials. The trials include metastatic breast cancer and primary cancer of the biliary tract, kidney, liver, lung (principally NSCLC), pancreas, prostate, and unspecified sites. Only 1 of these ongoing trials involves a direct comparison of SBRT with a different form of radiation therapy. This trial (ClinicalTrials.gov identifier: NCT00870116) is a nonrandomized comparison of SBRT delivered by CyberKnife (enrollment target of 20 patients) versus SBRT delivered by linac (enrollment target of 80 patients) versus conformal radiation therapy without respiratory tracking (enrollment target of 20 patients) for NSCLC. The primary outcome measure is local control. The trial commenced in April 2009 in France and is still recruiting patients. Three other comparative trials are designed with historical controls, including 1 each for metastatic breast cancer (ClinicalTrials.gov identifier: NCT00167414), NSCLC (ClinicalTrials.gov identifier: NCT00727350), and pancreatic cancer (ClinicalTrials.gov identifier: NCT00350142). A randomized lung cancer trial based in the Netherlands (Clinical Trials.gov identifier: NCT00687986) is comparing SBRT with primary resection of the tumor. The primary outcomes are local control, regional control, quality of life, and treatment costs. The enrollment target was 960 patients, and completion was expected in December 2013; however, the trial was terminated in April 2011 because of poor recruitment. A trial conducted in China (Clinical Trials.gov identifier: NCT00840749) will compare SBRT with surgical resection in NSCLC. The enrollment target is 1030 patients, with planned completion also in 2013. Another trial (ClinicalTrials.gov identifier: NCT00843726), conducted at Roswell Park Cancer Institute, Buffalo, New York, will randomly assign 98 patients to either 1 or 3 fractions of SBRT for NSCLC. Appendix Table 4 includes further information on these 6 or 7 comparative trials. Additional ongoing trials of SBRT are described in the full report (4).

Table Jump PlaceholderAppendix Table 4.  Comparative Clinical Trials Involving SBRT
Patient Selection Criteria

The most common selection criteria were inoperable tumors or patients declining surgery. Most studies required biopsy-proven disease before treatment and a minimum level of performance on the Karnofsky Performance Scale or the World Health Organization/Eastern Cooperative Oncology Group Performance Status scale, typically excluding patients with severe illness or disability. Patients who had received prior radiation therapy were typically excluded unless a minimum interval had elapsed before SBRT. Fifty-eight studies reported prior or concurrent treatment (for example, surgery, chemotherapy, and radiofrequency ablation).

Outcomes Measured

The outcomes most frequently assessed were tumor response (n = 55) (5, 8, 12, 14, 16, 1968), local control (n = 55) (58, 1012, 14, 1618, 3335, 5557, 5961, 63, 68101), overall survival (n = 48) (5, 78, 1012, 17, 24, 27, 31, 34, 4445, 57, 5964, 66, 6869, 7175, 77, 8184, 86, 88, 90, 9293, 95, 97105), and toxicity (n = 42) (5, 7, 13, 34, 39, 42, 4445, 48, 51, 6066, 6869, 7273, 75, 81, 83, 9499, 104115).

Adverse Events Reported

Many of the studies used the Radiation Therapy Oncology Group criteria and Common Toxicity Criteria, Version 2.0, to grade acute and late toxicity. A total of 113 studies reported acute or late adverse events. The most frequently reported adverse events were pain, fatigue, nausea, bleeding, and diarrhea. Study authors noted that some patients with these events had received prior treatment for cancer, received SBRT for recurring cancer, or had comorbid conditions. One study of SBRT for renal cell cancer reported no adverse effects of treatment (54).

Stereotactic body radiation therapy is a treatment option that is likely to be attractive to patients because of the convenience of fewer treatment sessions. The radiation oncologist may decide whether to use SBRT in any given patient on the basis of the patient's radiation history (in particular, prior radiation of the site to be treated), proposed treatment volume, function of the involved or nearby organs, the patient's capacity for recovery, patient preference, the number of tumor sites, and many other cancer-related factors (116).

Although many published studies describe SBRT, several limitations in the available literature raise concerns about the widespread use of SBRT. To date, no published comparative studies (either randomized or nonrandomized prospective studies) have addressed the relative effectiveness and safety of SBRT versus other forms of external-beam radiation therapy. Also, SBRT seems to be widely disseminated for treatment of various cancer types, although most of the studies (n = 68) were for SBRT for tumors located in the lung or thorax. We found fewer than 10 studies each of tumors of the pancreas, liver, colon, uterus, pelvis, sacrum, kidney, and prostate. A Medicare Evidence Development and Coverage Advisory Committee proceeding from April 2010 considered the evidence for radiation therapy for localized prostate cancer (117). The panel of 15 experts was asked to state its level of confidence in the evidence for improvement of mortality (survival and death rates), functional outcomes (erectile dysfunction, urinary incontinence, and fecal incontinence), and adverse events (rectal fistula, radiation burns, and infection) with SBRT compared with classical fractionated external-beam radiation therapy for localized prostate cancer. On a scale of 1 (low confidence) to 5 (high confidence), the average score was 1.07 for mortality, 1.13 for functional outcomes, and 1.33 for adverse events (117).

To date, 7 systematic reviews assessing SBRT for cancer have been published. Three assessed its use in NSCLC (118120), 2 in multiple sites (for example, liver and pancreas) (121122), 1 in liver cancer (123), and 1 in pulmonary metastasis (124). The general consensus among these reviews is that although single-group studies show potentially promising results for various cancer sites, prospective studies are necessary to determine the efficacy of SBRT compared with other available treatment options (for example, surgery or radiation therapy). Appendix Table 5 provides more detail regarding these reviews.

Table Jump PlaceholderAppendix Table 5.  Systematic Reviews

Such groups as the American Association of Physicists in Medicine have also urged participation in trials sponsored by the National Cancer Institute or in trials run by the National Cancer Institute–sponsored Radiation Therapy Oncology Group, a multi-institutional research cooperative. In a recent guidance document, the American Association of Physicists in Medicine pointed out that protocol-driven treatment in the context of such studies would reflect the guidelines produced by experts in the field (125). Future studies may help to determine the optimal number of radiation fractions, minimum and maximum doses per fraction, maximum number and diameter of lesions for various locations, and radiobiological explanations for the efficacy of SBRT.

Chang and Timmerman (126) point out that more multicenter trials are needed to corroborate results in single-institution trials and, like others (116), noted that longer-term follow-up will be necessary to assess late toxicities from SBRT. In addition, they point out that although the relative effectiveness and safety of the various devices available for delivering SBRT need further study, the training and experience of the operators may be of greater importance (126). The American Association of Physicists in Medicine Task Group on SBRT has emphasized the importance of having well-trained and dedicated staff for providing SBRT and points out the procedures that need to be performed by such personnel to ensure patient safety (125).

In summary, there are many publications on SBRT for cancer, principally NSCLC. Comparative studies (preferably randomized trials, but at least trials with concurrent controls) are needed to provide convincing evidence that the theoretical advantages of SBRT over other radiation therapies actually occur in the clinical setting. Appropriate comparators for SBRT studies may depend on the treatment site, tumor size, or feasibility of other forms of radiation therapy (for example, intensity-modulated radiation therapy or proton-beam therapy) or surgery for the patient population. At present, only 1 small, ongoing trial is making such a comparison. Consequently, a full systematic review of the current literature cannot answer questions on the effectiveness and safety of SBRT compared with other radiotherapy interventions. One large ongoing trial scheduled for completion in 2013 has the potential to answer questions about the effectiveness and safety of SBRT compared with surgical resection in patients with resectable early-stage lung cancer.

Brachytherapy: The placement of temporary or permanent radioactive material inside the body.

Cone-beam computed tomography: Often built into linear accelerators and uses a cone-shaped radiation field to obtain images over 1 to several minutes. The image is then modified to allow viewing in a usual coronal, transaxial, and sagittal format to allow high-precision targeting.

Computed tomography: Produces images based on a cross-sectional view of the body obtained from different projections in a given plane.

Coplanar: Within the same plane.

External-beam radiation therapy: Radiation therapy delivered from outside the body.

Fiducials: Markers that help to precisely identify the targeted tumor location. They may be located on a surface or surgically implanted for tumor locations throughout the body.

Four-dimensional conformal radiation therapy: Measures the natural tumor motion that occurs during treatment, such as from breathing. The measurements are included in the treatment plan to ensure that the tumor is targeted throughout the treatment course.

Fraction: A prescribed total treatment dose divided into smaller amounts.

Image-guided radiation therapy: The use of imaging methods (such as computed tomography) to assist in targeting a lesion during radiation treatment.

Intensity-modulated radiation therapy: Therapy that delivers radiation beams with varying intensities.

Isocenter: The center of the treatment area in relation to the paths of the radiation beams.

Linear accelerator (linac): Radiography machine that emits photon- or electron-radiation megavolts redirected in many arcs for treating benign or malignant lesions throughout the body.

Magnetic resonance imaging: Produces images by using high-field magnets and radiofrequency energies that can be acquired along any direction without using ionizing radiation. It is particularly useful for soft-tissue discrimination.

Multileaf collimator: Located in the linear particle accelerator and consists of multiple metal “leaves” that can be adjusted individually to shape the radiation beam to the contour of the tumor and to variably modulate the dose.

Noncoplanar: Within different planes.

Positron emission tomography: Produces images to evaluate biological function by detecting gamma radiation emitted from a positron-emitting compound that is injected into the patient (fluorodeoxyglucose is common).

Respiratory gating: Tracking patient's normal respiratory cycle with an infrared camera and a marker placed on the chest or abdomen or other methods.

Stereotaxy: Three-dimensional target localization. Stereotactic frames provide reference points (coordinates) in 3 dimensions.

Three-dimensional conformal radiation therapy: A 3-dimensional planning system to deliver radiation to the tumor.

Bucci MK, Bevan A, Roach M 3rd.  Advances in radiation therapy: conventional to 3D, to IMRT, to 4D, and beyond. CA Cancer J Clin. 2005; 55:117-34.
PubMed
CrossRef
 
American Hospital Association.  AHA Guide to the Health Care Field 2009 Edition. Chicago: American Hosp Assoc; 2008.
 
Lanni TB Jr, Grills IS, Kestin LL, Robertson JM.  Stereotactic radiotherapy reduces treatment cost while improving overall survival and local control over standard fractionated radiation therapy for medically inoperable non-small-cell lung cancer. Am J Clin Oncol. 2010.
PubMed
 
Tipton KN, Sullivan N, Bruening W, Inamdar R, Launders J, Uhl S, et al.  Stereotactic Body Radiation Therapy. Technical Brief no. 6. (Prepared by ECRI Institute Evidence-based Practice Center under Contract no. HHSA-290-02-0019.) AHRQ Publication no. 10 (11)-EHC058-EF. Rockville, MD: Agency for Healthcare Research and Quality; May 2011. Available atwww.effectivehealthcare.ahrq.gov/reports/final.cfm.
 
Chawla S, Chen Y, Katz AW, Muhs AG, Philip A, Okunieff P. et al.  Stereotactic body radiotherapy for treatment of adrenal metastases. Int J Radiat Oncol Biol Phys. 2009; 75:71-5.
PubMed
 
Guckenberger M, Wulf J, Mueller G, Krieger T, Baier K, Gabor M. et al.  Dose-response relationship for image-guided stereotactic body radiotherapy of pulmonary tumors: relevance of 4D dose calculation. Int J Radiat Oncol Biol Phys. 2009; 74:47-54.
PubMed
 
Haasbeek CJ, Lagerwaard FJ, de Jaeger K, Slotman BJ, Senan S.  Outcomes of stereotactic radiotherapy for a new clinical stage I lung cancer arising postpneumonectomy. Cancer. 2009; 115:587-94.
PubMed
 
Lee MT, Kim JJ, Dinniwell R, Brierley J, Lockwood G, Wong R. et al.  Phase I study of individualized stereotactic body radiotherapy of liver metastases. J Clin Oncol. 2009; 27:1585-91.
PubMed
 
Milano MT, Katz AW, Okunieff P.  Patterns of recurrence after curative-intent radiation for oligometastases confined to one organ. Am J Clin Oncol. 2010; 33:157-63.
PubMed
 
Stephans KL, Djemil T, Reddy CA, Gajdos SM, Kolar M, Machuzak M. et al.  Comprehensive analysis of pulmonary function Test (PFT) changes after stereotactic body radiotherapy (SBRT) for stage I lung cancer in medically inoperable patients. J Thorac Oncol. 2009; 4:838-44.
PubMed
 
Lagerwaard FJ, Haasbeek CJ, Smit EF, Slotman BJ, Senan S.  Outcomes of risk-adapted fractionated stereotactic radiotherapy for stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2008; 70:685-92.
PubMed
 
Aoki M, Abe Y, Kondo H, Hatayama Y, Kawaguchi H, Fujimori A. et al.  Clinical outcome of stereotactic body radiotherapy of 54 Gy in nine fractions for patients with localized lung tumor using a custom-made immobilization system. Radiat Med. 2007; 25:289-94.
PubMed
 
Dawson LA, Eccles C, Craig T.  Individualized image guided iso-NTCP based liver cancer SBRT. Acta Oncol. 2006; 45:856-64.
PubMed
 
Guckenberger M, Heilman K, Wulf J, Mueller G, Beckmann G, Flentje M.  Pulmonary injury and tumor response after stereotactic body radiotherapy (SBRT): results of a serial follow-up CT study. Radiother Oncol. 2007; 85:435-42.
PubMed
 
Katoh N, Onimaru R, Sakuhara Y, Abo D, Shimizu S, Taguchi H. et al.  Real-time tumor-tracking radiotherapy for adrenal tumors. Radiother Oncol. 2008; 87:418-24.
PubMed
 
Tse RV, Hawkins M, Lockwood G, Kim JJ, Cummings B, Knox J. et al.  Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol. 2008; 26:657-64.
PubMed
 
Uematsu M, Shioda A, Suda A, Fukui T, Ozeki Y, Hama Y. et al.  Computed tomography-guided frameless stereotactic radiotherapy for stage I non-small cell lung cancer: a 5-year experience. Int J Radiat Oncol Biol Phys. 2001; 51:666-70.
PubMed
 
Xia T, Li H, Sun Q, Wang Y, Fan N, Yu Y. et al.  Promising clinical outcome of stereotactic body radiation therapy for patients with inoperable stage I/II non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2006; 66:117-25.
PubMed
 
Gunvén P, Blomgren H, Lax I.  Radiosurgery for recurring liver metastases after hepatectomy. Hepatogastroenterology. 2003; 50:1201-4.
PubMed
 
Sinha B, McGarry RC.  Stereotactic body radiotherapy for bilateral primary lung cancers: the Indiana University experience. Int J Radiat Oncol Biol Phys. 2006; 66:1120-4.
PubMed
 
Baumann P, Nyman J, Lax I, Friesland S, Hoyer M, RehnEricsson S. et al.  Factors important for efficacy of stereotactic body radiotherapy of medically inoperable stage I lung cancer. A retrospective analysis of patients treated in the Nordic countries. Acta Oncol. 2006; 45:787-95.
PubMed
 
Teh BS, Paulino AC, Lu HH, Chiu JK, Richardson S, Chiang S. et al.  Versatility of the Novalis system to deliver image-guided stereotactic body radiation therapy (SBRT) for various anatomical sites. Technol Cancer Res Treat. 2007; 6:347-54.
PubMed
 
Brown WT, Wu X, Wen BC, Fowler JF, Fayad F, Amendola BE. et al.  Early results of CyberKnife image-guided robotic stereotactic radiosurgery for treatment of lung tumors. Comput Aided Surg. 2007; 12:253-61.
PubMed
 
Norihisa Y, Nagata Y, Takayama K, Matsuo Y, Sakamoto T, Sakamoto M. et al.  Stereotactic body radiotherapy for oligometastatic lung tumors. Int J Radiat Oncol Biol Phys. 2008; 72:398-403.
PubMed
 
Kunos C, von Gruenigen V, Waggoner S, Brindle J, Zhang Y, Myers B. et al.  Cyberknife radiosurgery for squamous cell carcinoma of vulva after prior pelvic radiation therapy. Technol Cancer Res Treat. 2008; 7:375-80.
PubMed
 
Kim MS, Choi C, Yoo S, Cho C, Seo Y, Ji Y. et al.  Stereotactic body radiation therapy in patients with pelvic recurrence from rectal carcinoma. Jpn J Clin Oncol. 2008; 38:695-700.
PubMed
 
Jereczek-Fossa BA, Kowalczyk A, D'Onofrio A, Catalano G, Garibaldi C, Boboc G. et al.  Three-dimensional conformal or stereotactic reirradiation of recurrent, metastatic or new primary tumors. Analysis of 108 patients. Strahlenther Onkol. 2008; 184:36-40.
PubMed
 
Fritz P, Kraus HJ, Blaschke T, Mühlnickel W, Strauch K, Engel-Riedel W. et al.  Stereotactic, high single-dose irradiation of stage I non-small cell lung cancer (NSCLC) using four-dimensional CT scans for treatment planning. Lung Cancer. 2008; 60:193-9.
PubMed
 
Coon D, Gokhale AS, Burton SA, Heron DE, Ozhasoglu C, Christie N.  Fractionated stereotactic body radiation therapy in the treatment of primary, recurrent, and metastatic lung tumors: the role of positron emission tomography/computed tomography-based treatment planning. Clin Lung Cancer. 2008; 9:217-21.
PubMed
 
Choi BO, Choi IB, Jang HS, Kang YN, Jang JS, Bae SH. et al.  Stereotactic body radiation therapy with or without transarterial chemoembolization for patients with primary hepatocellular carcinoma: preliminary analysis. BMC Cancer. 2008; 8:351.
PubMed
 
Casamassima F, Masi L, Bonucci I, Polli C, Menichelli C, Gulisano M. et al.  Relevance of biologically equivalent dose values in outcome evaluation of stereotactic radiotherapy for lung nodules. Int J Radiat Oncol Biol Phys. 2008; 71:145-51.
PubMed
 
Pennathur A, Luketich JD, Heron DE, Abbas G, Burton S, Chen M. et al.  Stereotactic radiosurgery for the treatment of stage I non-small cell lung cancer in high-risk patients. J Thorac Cardiovasc Surg. 2009; 137:597-604.
PubMed
 
McCammon R, Schefter TE, Gaspar LE, Zaemisch R, Gravdahl D, Kavanagh B.  Observation of a dose-control relationship for lung and liver tumors after stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2009; 73:112-8.
PubMed
 
Choi CW, Cho CK, Yoo SY, Kim MS, Yang KM, Yoo HJ. et al.  Image-guided stereotactic body radiation therapy in patients with isolated para-aortic lymph node metastases from uterine cervical and corpus cancer. Int J Radiat Oncol Biol Phys. 2009; 74:147-53.
PubMed
 
Ahn SH, Han MS, Yoon JH, Jeon SY, Kim CH, Yoo HJ. et al.  Treatment of stage I non-small cell lung cancer with CyberKnife, image-guided robotic stereotactic radiosurgery. Oncol Rep. 2009; 21:693-6.
PubMed
 
Nakagawa K, Aoki Y, Tago M, Terahara A, Ohtomo K.  Megavoltage CT-assisted stereotactic radiosurgery for thoracic tumors: original research in the treatment of thoracic neoplasms. Int J Radiat Oncol Biol Phys. 2000; 48:449-57.
PubMed
 
Harada T, Shirato H, Ogura S, Oizumi S, Yamazaki K, Shimizu S. et al.  Real-time tumor-tracking radiation therapy for lung carcinoma by the aid of insertion of a gold marker using bronchofiberscopy. Cancer. 2002; 95:1720-7.
PubMed
 
Whyte RI, Crownover R, Murphy MJ, Martin DP, Rice TW, DeCamp MM Jr. et al.  Stereotactic radiosurgery for lung tumors: preliminary report of a phase I trial. Ann Thorac Surg. 2003; 75:1097-101.
PubMed
 
Lee SW, Choi EK, Park HJ, Ahn SD, Kim JH, Kim KJ. et al.  Stereotactic body frame based fractionated radiosurgery on consecutive days for primary or metastatic tumors in the lung. Lung Cancer. 2003; 40:309-15.
PubMed
 
Onishi H, Kuriyama K, Komiyama T, Tanaka S, Sano N, Marino K. et al.  Clinical outcomes of stereotactic radiotherapy for stage I non-small cell lung cancer using a novel irradiation technique: patient self-controlled breath-hold and beam switching using a combination of linear accelerator and CT scanner. Lung Cancer. 2004; 45:45-55.
PubMed
 
Ishimori T, Saga T, Nagata Y, Nakamoto Y, Higashi T, Mamede M. et al.  18F-FDG and 11C-methionine PET for evaluation of treatment response of lung cancer after stereotactic radiotherapy. Ann Nucl Med. 2004; 18:669-74.
PubMed
 
Song DY, Benedict SH, Cardinale RM, Chung TD, Chang MG, Schmidt-Ullrich RK.  Stereotactic body radiation therapy of lung tumors: preliminary experience using normal tissue complication probability-based dose limits. Am J Clin Oncol. 2005; 28:591-6.
PubMed
 
Shioyama Y, Nakamura K, Anai S, Sasaki T, Ooga S, Saku M. et al.  Stereotactic radiotherapy for lung and liver tumors using a body cast system: setup accuracy and preliminary clinical outcome. Radiat Med. 2005; 23:407-13.
PubMed
 
Hoyer M, Roed H, Sengelov L, Traberg A, Ohlhuis L, Pedersen J. et al.  Phase-II study on stereotactic radiotherapy of locally advanced pancreatic carcinoma. Radiother Oncol. 2005; 76:48-53.
PubMed
 
Zimmermann FB, Geinitz H, Schill S, Thamm R, Nieder C, Schratzenstaller U. et al.  Stereotactic hypofractionated radiotherapy in stage I (T1-2 N0 M0) non-small-cell lung cancer (NSCLC). Acta Oncol. 2006; 45:796-801.
PubMed
 
Yoon SM, Choi EK, Lee SW, Yi BY, Ahn SD, Shin SS. et al.  Clinical results of stereotactic body frame based fractionated radiation therapy for primary or metastatic thoracic tumors. Acta Oncol. 2006; 45:1108-14.
PubMed
 
Timmerman R, McGarry R, Yiannoutsos C, Papiez L, Tudor K, DeLuca J. et al.  Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol. 2006; 24:4833-9.
PubMed
 
Svedman C, Sandström P, Pisa P, Blomgren H, Lax I, Kälkner KM. et al.  A prospective phase II trial of using extracranial stereotactic radiotherapy in primary and metastatic renal cell carcinoma. Acta Oncol. 2006; 45:870-5.
PubMed
 
Nuyttens JJ, Prévost JB, Praag J, Hoogeman M, Van Klaveren RJ, Levendag PC. et al.  Lung tumor tracking during stereotactic radiotherapy treatment with the CyberKnife: marker placement and early results. Acta Oncol. 2006; 45:961-5.
PubMed
 
Le QT, Loo BW, Ho A, Cotrutz C, Koong AC, Wakelee H. et al.  Results of a phase I dose-escalation study using single-fraction stereotactic radiotherapy for lung tumors. J Thorac Oncol. 2006; 1:802-9.
PubMed
 
Hoyer M, Roed H, Traberg Hansen A, Ohlhuis L, Petersen J, Nellemann H. et al.  Phase II study on stereotactic body radiotherapy of colorectal metastases. Acta Oncol. 2006; 45:823-30.
PubMed
 
Hodge W, Tom WA, Jaradat HA, Orton NP, Khuntia D, Traynor A. et al.  Feasibility report of image guided stereotactic body radiotherapy (IG-SBRT) with tomotherapy for early stage medically inoperable lung cancer using extreme hypofractionation. Acta Oncol. 2006; 45:890-6.
PubMed
 
Ricardi U, Guarneri A, Mantovani C, Ciammella P, Giglioli FR, Ragona R.  Stereotactic body radiation therapy for early non-small cell lung cancer: experience at the University of Turin. J Thorac Oncol. 2007; 2:S47.
PubMed
 
Ponsky LE, Mahadevan A, Gill IS, Djemil T, Novick AC.  Renal radiosurgery: initial clinical experience with histological evaluation. Surg Innov. 2007; 14:265-9.
PubMed
 
Salazar OM, Sandhu TS, Lattin PB, Chang JH, Lee CK, Groshko GA. et al.  Once-weekly, high-dose stereotactic body radiotherapy for lung cancer: 6-year analysis of 60 early-stage, 42 locally advanced, and 7 metastatic lung cancers. Int J Radiat Oncol Biol Phys. 2008; 72:707-15.
PubMed
 
Chang JY, Balter PA, Dong L, Yang Q, Liao Z, Jeter M. et al.  Stereotactic body radiation therapy in centrally and superiorly located stage I or isolated recurrent non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2008; 72:967-71.
PubMed
 
Kopek N, Paludan M, Petersen J, Hansen AT, Grau C, Høyer M.  Co-morbidity index predicts for mortality after stereotactic body radiotherapy for medically inoperable early-stage non-small cell lung cancer. Radiother Oncol. 2009; 93:402-7.
PubMed
 
Collins BT, Vahdat S, Erickson K, Collins SP, Suy S, Yu X. et al.  Radical cyberknife radiosurgery with tumor tracking: an effective treatment for inoperable small peripheral stage I non-small cell lung cancer. J Hematol Oncol. 2009; 2:1.
PubMed
 
Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J. et al.  Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010; 303:1070-6.
PubMed
 
Polistina F, Costantin G, Casamassima F, Francescon P, Guglielmi R, Panizzoni G. et al.  Unresectable locally advanced pancreatic cancer: a multimodal treatment using neoadjuvant chemoradiotherapy (gemcitabine plus stereotactic radiosurgery) and subsequent surgical exploration. Ann Surg Oncol. 2010; 17:2092-101.
PubMed
 
Dunlap NE, Cai J, Biedermann GB, Yang W, Benedict SH, Sheng K. et al.  Chest wall volume receiving >30 Gy predicts risk of severe pain and/or rib fracture after lung stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2010; 76:796-801.
PubMed
 
Crabtree TD, Denlinger CE, Meyers BF, El Naqa I, Zoole J, Krupnick AS. et al.  Stereotactic body radiation therapy versus surgical resection for stage I non-small cell lung cancer. J Thorac Cardiovasc Surg. 2010; 140:377-86.
PubMed
 
Louis C, Dewas S, Mirabel X, Lacornerie T, Adenis A, Bonodeau F. et al.  Stereotactic radiotherapy of hepatocellular carcinoma: preliminary results. Technol Cancer Res Treat. 2010; 9:479-87.
PubMed
 
Cárdenes HR, Price TR, Perkins SM, Maluccio M, Kwo P, Breen TE. et al.  Phase I feasibility trial of stereotactic body radiation therapy for primary hepatocellular carcinoma. Clin Transl Oncol. 2010; 12:218-25.
PubMed
 
Shin YJ, Kim MS, Yoo SY, Cho CK, Seo YS, Kang JK. et al.  Pilot study of stereotactic body radiotherapy for huge hepatocellular carcinoma unsuitable for other therapies. Tumori. 2010; 96:65-70.
PubMed
 
Yang ZX, Wang D, Wang G, Zhang QH, Liu JM, Peng P. et al.  Clinical study of recombinant adenovirus-p53 combined with fractionated stereotactic radiotherapy for hepatocellular carcinoma. J Cancer Res Clin Oncol. 2010; 136:625-30.
PubMed
 
Kim JH, Kim MS, Yoo SY, Lim SM, Lee GH, Yi KH.  Stereotactic body radiotherapy for refractory cervical lymph node recurrence of nonanaplastic thyroid cancer. Otolaryngol Head Neck Surg. 2010; 142:338-43.
PubMed
 
Kang JK, Kim MS, Kim JH, Yoo SY, Cho CK, Yang KM. et al.  Oligometastases confined one organ from colorectal cancer treated by SBRT. Clin Exp Metastasis. 2010; 27:273-8.
PubMed
 
Kopek N, Holt MI, Hansen AT, Høyer M.  Stereotactic body radiotherapy for unresectable cholangiocarcinoma. Radiother Oncol. 2010; 94:47-52.
PubMed
 
Vahdat S, Oermann EK, Collins SP, Yu X, Abedalthagafi M, Debrito P. et al.  CyberKnife radiosurgery for inoperable stage IA non-small cell lung cancer: 18F-fluorodeoxyglucose positron emission tomography/computed tomography serial tumor response assessment. J Hematol Oncol. 2010; 3:6.
PubMed
 
Kim MS, Yoo SY, Cho CK, Yoo HJ, Choi CW, Seo YS. et al.  Stereotactic body radiation therapy using three fractions for isolated lung recurrence from colorectal cancer. Oncology. 2009; 76:212-9.
PubMed
 
Rusthoven KE, Kavanagh BD, Cardenes H, Stieber VW, Burri SH, Feigenberg SJ. et al.  Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases. J Clin Oncol. 2009; 27:1572-8.
PubMed
 
Rusthoven KE, Kavanagh BD, Burri SH, Chen C, Cardenes H, Chidel MA. et al.  Multi-institutional phase I/II trial of stereotactic body radiation therapy for lung metastases. J Clin Oncol. 2009; 27:1579-84.
PubMed
 
van der Voort van Zyp NC, Prévost JB, Hoogeman MS, Praag J, van der Holt B, Levendag PC. et al.  Stereotactic radiotherapy with real-time tumor tracking for non-small cell lung cancer: clinical outcome. Radiother Oncol. 2009; 91:296-300.
PubMed
 
Schellenberg D, Goodman KA, Lee F, Chang S, Kuo T, Ford JM. et al.  Gemcitabine chemotherapy and single-fraction stereotactic body radiotherapy for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2008; 72:678-86.
PubMed
 
Hof H, Hoess A, Oetzel D, Debus J, Herfarth K.  Stereotactic single-dose radiotherapy of lung metastases. Strahlenther Onkol. 2007; 183:673-8.
PubMed
 
Hof H, Muenter M, Oetzel D, Hoess A, Debus J, Herfarth K.  Stereotactic single-dose radiotherapy (radiosurgery) of early stage nonsmall-cell lung cancer (NSCLC). Cancer. 2007; 110:148-55.
PubMed
 
Nuyttens JJ, Prevost JB, Van der Voort van Zijp NC, Hoogeman M, Levendag PC.  Curative stereotactic robotic radiotherapy treatment for extracranial, extrapulmonary, extrahepatic, and extraspinal tumors: technique, early results, and toxicity. Technol Cancer Res Treat. 2007; 6:605-10.
PubMed
 
Ernst-Stecken A, Lambrecht U, Mueller R, Sauer R, Grabenbauer G.  Hypofractionated stereotactic radiotherapy for primary and secondary intrapulmonary tumors: first results of a phase I/II study. Strahlenther Onkol. 2006; 182:696-702.
PubMed
 
Méndez Romero A, Wunderink W, Hussain SM, DePooter JA, Heijmen BJ, Nowak PC. et al.  Stereotactic body radiation therapy for primary and metastatic liver tumors: a single institution phase i-ii study. Acta Oncol. 2006; 45:831-7.
PubMed
 
Wulf J, Guckenberger M, Haedinger U, Oppitz U, Mueller G, Baier K. et al.  Stereotactic radiotherapy of primary liver cancer and hepatic metastases. Acta Oncol. 2006; 45:838-47.
PubMed
 
Wulf J, Hädinger U, Oppitz U, Thiele W, Ness-Dourdoumas R, Flentje M.  Stereotactic radiotherapy of targets in the lung and liver. Strahlenther Onkol. 2001; 177:645-55.
PubMed
 
Mahadevan A, Jain S, Goldstein M, Miksad R, Pleskow D, Sawhney M. et al.  Stereotactic body radiotherapy and gemcitabine for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2010; 78:735-42.
PubMed
 
Chang DT, Schellenberg D, Shen J, Kim J, Goodman KA, Fisher GA. et al.  Stereotactic radiotherapy for unresectable adenocarcinoma of the pancreas. Cancer. 2009; 115:665-72.
PubMed
 
Milano MT, Chen Y, Katz AW, Philip A, Schell MC, Okunieff P.  Central thoracic lesions treated with hypofractionated stereotactic body radiotherapy. Radiother Oncol. 2009; 91:301-6.
PubMed
 
Stephans KL, Djemil T, Reddy CA, Gajdos SM, Kolar M, Mason D. et al.  A comparison of two stereotactic body radiation fractionation schedules for medically inoperable stage I non-small cell lung cancer: the Cleveland Clinic experience. J Thorac Oncol. 2009; 4:976-82.
PubMed
 
Song SY, Choi W, Shin SS, Lee SW, Ahn SD, Kim JH. et al.  Fractionated stereotactic body radiation therapy for medically inoperable stage I lung cancer adjacent to central large bronchus. Lung Cancer. 2009; 66:89-93.
PubMed
 
Takeda A, Sanuki N, Kunieda E, Ohashi T, Oku Y, Takeda T. et al.  Stereotactic body radiotherapy for primary lung cancer at a dose of 50 Gy total in five fractions to the periphery of the planning target volume calculated using a superposition algorithm. Int J Radiat Oncol Biol Phys. 2009; 73:442-8.
PubMed
 
Baumann P, Nyman J, Hoyer M, Gagliardi G, Lax I, Wennberg B. et al.  Stereotactic body radiotherapy for medically inoperable patients with stage I non-small cell lung cancer—a first report of toxicity related to COPD/CVD in a non-randomized prospective phase II study. Radiother Oncol. 2008; 88:359-67.
PubMed
 
Onimaru R, Fujino M, Yamazaki K, Onodera Y, Taguchi H, Katoh N. et al.  Steep dose-response relationship for stage I non-small-cell lung cancer using hypofractionated high-dose irradiation by real-time tumor-tracking radiotherapy. Int J Radiat Oncol Biol Phys. 2008; 70:374-81.
PubMed
 
Svedman C, Karlsson K, Rutkowska E, Sandström P, Blomgren H, Lax I. et al.  Stereotactic body radiotherapy of primary and metastatic renal lesions for patients with only one functioning kidney. Acta Oncol. 2008; 47:1578-83.
PubMed
 
Joyner M, Salter BJ, Papanikolaou N, Fuss M.  Stereotactic body radiation therapy for centrally located lung lesions. Acta Oncol. 2006; 45:802-7.
PubMed
 
Hamamoto Y, Kataoka M, Yamashita M, Shinkai T, Kubo Y, Sugawara Y. et al.  Local control of metastatic lung tumors treated with SBRT of 48 Gy in four fractions: in comparison with primary lung cancer. Jpn J Clin Oncol. 2010; 40:125-9.
PubMed
 
Bradley JD, El Naqa I, Drzymala RE, Trovo M, Jones G, Denning MD.  Stereotactic body radiation therapy for early-stage non-small-cell lung cancer: the pattern of failure is distant. Int J Radiat Oncol Biol Phys. 2010; 77:1146-50.
PubMed
 
Unger K, Ju A, Oermann E, Suy S, Yu X, Vahdat S. et al.  CyberKnife for hilar lung tumors: report of clinical response and toxicity. J Hematol Oncol. 2010; 3:39.
PubMed
 
Trovo M, Linda A, El Naqa I, Javidan-Nejad C, Bradley J.  Early and late lung radiographic injury following stereotactic body radiation therapy (SBRT). Lung Cancer. 2010; 69:77-85.
PubMed
 
Stintzing S, Hoffmann RT, Heinemann V, Kufeld M, Muacevic A.  Frameless single-session robotic radiosurgery of liver metastases in colorectal cancer patients. Eur J Cancer. 2010; 46:1026-32.
PubMed
 
Goodman KA, Wiegner EA, Maturen KE, Zhang Z, Mo Q, Yang G. et al.  Dose-escalation study of single-fraction stereotactic body radiotherapy for liver malignancies. Int J Radiat Oncol Biol Phys. 2010; 78:486-93.
PubMed
 
Stintzing S, Hoffmann RT, Heinemann V, Kufeld M, Rentsch M, Muacevic A.  Radiosurgery of liver tumors: value of robotic radiosurgical device to treat liver tumors. Ann Surg Oncol. 2010; 17:2877-83.
PubMed
 
Jorcano S, Molla M, Escude L, Sanz S, Hidalgo A, Toscas JI. et al.  Hypofractionated extracranial stereotactic radiotherapy boost for gynecologic tumors: a promising alternative to high-dose rate brachytherapy. Technol Cancer Res Treat. 2010; 9:509-14.
PubMed
 
Guckenberger M, Bachmann J, Wulf J, Mueller G, Krieger T, Baier K. et al.  Stereotactic body radiotherapy for local boost irradiation in unfavourable locally recurrent gynaecological cancer. Radiother Oncol. 2010; 94:53-9.
PubMed
 
Milano MT, Philip A, Okunieff P.  Analysis of patients with oligometastases undergoing two or more curative-intent stereotactic radiotherapy courses. Int J Radiat Oncol Biol Phys. 2009; 73:832-7.
PubMed
 
Koto M, Takai Y, Ogawa Y, Matsushita H, Takeda K, Takahashi C. et al.  A phase II study on stereotactic body radiotherapy for stage I non-small cell lung cancer. Radiother Oncol. 2007; 85:429-34.
PubMed
 
Grills IS, Mangona VS, Welsh R, Chmielewski G, McInerney E, Martin S. et al.  Outcomes after stereotactic lung radiotherapy or wedge resection for stage I non-small-cell lung cancer. J Clin Oncol. 2010; 28:928-35.
PubMed
 
Seo YS, Kim MS, Yoo SY, Cho CK, Choi CW, Kim JH. et al.  Preliminary result of stereotactic body radiotherapy as a local salvage treatment for inoperable hepatocellular carcinoma. J Surg Oncol. 2010; 102:209-14.
PubMed
 
Townsend NC, Huth BJ, Ding W, Garber B, Mooreville M, Arrigo S. et al.  Acute toxicity after cyberknife-delivered hypofractionated radiotherapy for treatment of prostate cancer. Am J Clin Oncol. 2011; 34:6-10.
PubMed
 
Son SH, Choi BO, Ryu MR, Kang YN, Jang JS, Bae SH. et al.  Stereotactic body radiotherapy for patients with unresectable primary hepatocellular carcinoma: dose-volumetric parameters predicting the hepatic complication. Int J Radiat Oncol Biol Phys. 2010; 78:1073-80.
PubMed
 
Moll M, Escude L, Nouet P, Popowski Y, Hidalgo A, Rouzaud M. et al.  Fractionated stereotactic radiotherapy boost for gynecologic tumors: an alternative to brachytherapy? Int J Radiat Oncol Biol Phys. 2005; 62:118-24.
PubMed
 
King CR, Brooks JD, Gill H, Pawlicki T, Cotrutz C, Presti JC Jr.  Stereotactic body radiotherapy for localized prostate cancer: interim results of a prospective phase II clinical trial. Int J Radiat Oncol Biol Phys. 2009; 73:1043-8.
PubMed
 
Yamashita H, Kobayashi-Shibata S, Terahara A, Okuma K, Haga A, Wakui R. et al.  Prescreening based on the presence of CT-scan abnormalities and biomarkers (KL-6 and SP-D) may reduce severe radiation pneumonitis after stereotactic radiotherapy. Radiat Oncol. 2010; 5:32.
PubMed
 
Takeda A, Ohashi T, Kunieda E, Enomoto T, Sanuki N, Takeda T. et al.  Early graphical appearance of radiation pneumonitis correlates with the severity of radiation pneumonitis after stereotactic body radiotherapy (SBRT) in patients with lung tumors. Int J Radiat Oncol Biol Phys. 2010; 77:685-90.
PubMed
 
Bolzicco G, Favretto MS, Scremin E, Tambone C, Tasca A, Guglielmi R.  Image-guided stereotactic body radiation therapy for clinically localized prostate cancer: preliminary clinical results. Technol Cancer Res Treat. 2010; 9:473-7.
PubMed
 
Oermann EK, Slack RS, Hanscom HN, Lei S, Suy S, Park HU. et al.  A pilot study of intensity modulated radiation therapy with hypofractionated stereotactic body radiation therapy (SBRT) boost in the treatment of intermediate- to high-risk prostate cancer. Technol Cancer Res Treat. 2010; 9:453-62.
PubMed
 
Aluwini S, van Rooij P, Hoogeman M, Bangma C, Kirkels WJ, Incrocci L. et al.  CyberKnife stereotactic radiotherapy as monotherapy for low- to intermediate-stage prostate cancer: early experience, feasibility, and tolerance. J Endourol. 2010; 24:865-9.
PubMed
 
Freeman DE, King CR.  Stereotactic body radiotherapy for low-risk prostate cancer: five-year outcomes. Radiat Oncol. 2011; 6:3.
PubMed
 
Meyer JL, Verhey L, Xia P, Wong J.  New technologies in the radiotherapy clinic. Front Radiat Ther Oncol. 2007; 40:1-17.
PubMed
 
MEDCAC Meeting: Radiation Therapy for Localized Prostate Cancer. Baltimore, MD: Centers for Medicare & Medicaid Services; 21 April 2010. Accessed atwww.cms.gov/medicare-coverage-database/details/medcac-meeting-details.aspx?&bc=BAAAAAAAAAAA&MEDCACId=54&on 15 March 2011.
 
Nguyen NP, Garland L, Welsh J, Hamilton R, Cohen D, Vinh-Hung V.  Can stereotactic fractionated radiation therapy become the standard of care for early stage non-small cell lung carcinoma. Cancer Treat Rev. 2008; 34:719-27.
PubMed
 
Brock J, Ashley S, Bedford J, Nioutsikou E, Partridge M, Brada M.  Review of hypofractionated small volume radiotherapy for early-stage non-small cell lung cancer. Clin Oncol (R Coll Radiol). 2008; 20:666-76.
PubMed
 
Chi A, Liao Z, Nguyen NP, Xu J, Stea B, Komaki R.  Systemic review of the patterns of failure following stereotactic body radiation therapy in early-stage non-small-cell lung cancer: clinical implications. Radiother Oncol. 2010; 94:1-11.
PubMed
 
Calcerrada Díaz-Santos N, BlascoAmaro JA, Cardiel GA, Andradas Aragonés E.  The safety and efficacy of robotic image-guided radiosurgery system treatment for intra- and extracranial lesions: a systematic review of the literature. Radiother Oncol. 2008; 89:245-53.
PubMed
 
Khrizman P, Small W Jr, Dawson L, Benson AB 3rd.  The use of stereotactic body radiation therapy in gastrointestinal malignancies in locally advanced and metastatic settings. Clin Colorectal Cancer. 2010; 9:136-43.
PubMed
 
Sawrie SM, Fiveash JB, Caudell JJ.  Stereotactic body radiation therapy for liver metastases and primary hepatocellular carcinoma: normal tissue tolerances and toxicity. Cancer Control. 2010; 17:111-9.
PubMed
 
Siva S, MacManus M, Ball D.  Stereotactic radiotherapy for pulmonary oligometastases: a systematic review. J Thorac Oncol. 2010; 5:1091-9.
PubMed
 
Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B. et al.  Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010; 37:4078-101.
PubMed
 
Chang BK, Timmerman RD.  Stereotactic body radiation therapy: a comprehensive review. Am J Clin Oncol. 2007; 30:637-44.
PubMed
 
Olsen CC, Welsh J, Kavanagh BD, Franklin W, McCarter M, Cardenes HR. et al.  Microscopic and macroscopic tumor and parenchymal effects of liver stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2009; 73:1414-24.
PubMed
 
Seong J, Lee IJ, Shim SJ, Lim do H, Kim TH, Kim JH. et al.  A multicenter retrospective cohort study of practice patterns and clinical outcome on radiotherapy for hepatocellular carcinoma in Korea. Liver Int. 2009; 29:147-52.
PubMed
 
Beitler JJ, Makara D, Silverman P, Lederman G.  Definitive, high-dose-per-fraction, conformal, stereotactic external radiation for renal cell carcinoma. Am J Clin Oncol. 2004; 27:646-8.
PubMed
 
Henderson M, McGarry R, Yiannoutsos C, Fakiris A, Hoopes D, Williams M. et al.  Baseline pulmonary function as a predictor for survival and decline in pulmonary function over time in patients undergoing stereotactic body radiotherapy for the treatment of stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2008; 72:404-9.
PubMed
 
Kawase T, Takeda A, Kunieda E, Kokubo M, Kamikubo Y, Ishibashi R. et al.  Extrapulmonary soft-tissue fibrosis resulting from hypofractionated stereotactic body radiotherapy for pulmonary nodular lesions. Int J Radiat Oncol Biol Phys. 2009; 74:349-54.
PubMed
 
Ricardi U, Filippi AR, Guarneri A, Giglioli FR, Mantovani C, Fiandra C. et al.  Dosimetric predictors of radiation-induced lung injury in stereotactic body radiation therapy. Acta Oncol. 2009; 48:571-7.
PubMed
 
Rusthoven KE, Hammerman SF, Kavanagh BD, Birtwhistle MJ, Stares M, Camidge DR.  Is there a role for consolidative stereotactic body radiation therapy following first-line systemic therapy for metastatic lung cancer? A patterns-of-failure analysis. Acta Oncol. 2009; 48:578-83.
PubMed
 
Hoopes DJ, Tann M, Fletcher JW, Forquer JA, Lin PF, Lo SS. et al.  FDG-PET and stereotactic body radiotherapy (SBRT) for stage I non-small-cell lung cancer. Lung Cancer. 2007; 56:229-34.
PubMed
 
Muacevic A, Drexler C, Wowra B, Schweikard A, Schlaefer A, Hoffmann RT. et al.  Technical description, phantom accuracy, and clinical feasibility for single-session lung radiosurgery using robotic image-guided real-time respiratory tumor tracking. Technol Cancer Res Treat. 2007; 6:321-8.
PubMed
 
Paludan M, Traberg Hansen A, Petersen J, Grau C, Høyer M.  Aggravation of dyspnea in stage I non-small cell lung cancer patients following stereotactic body radiotherapy: is there a dose-volume dependency?. Acta Oncol. 2006; 45:818-22.
PubMed
 
Scorsetti M, Navarria P, Facoetti A, Lattuada P, Urso G, Mirandola A. et al.  Effectiveness of stereotactic body radiotherapy in the treatment of inoperable early-stage lung cancer. Anticancer Res. 2007; 27:3615-9.
PubMed
 
Hof H, Zgoda J, Nill S, Hoess A, Kopp-Schneider A, Herfarth K. et al.  Time- and dose-dependency of radiographic normal tissue changes of the lung after stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 2010; 77:1369-74.
PubMed
 
Gerszten PC, Ozhasoglu C, Burton SA, Welch WC, Vogel WJ, Atkins BA. et al.  CyberKnife frameless single-fraction stereotactic radiosurgery for tumors of the sacrum. Neurosurg Focus. 2003; 15:7.
PubMed
 
Fuller DB, Naitoh J, Lee C, Hardy S, Jin H.  Virtual HDR CyberKnife treatment for localized prostatic carcinoma: dosimetry comparison with HDR brachytherapy and preliminary clinical observations. Int J Radiat Oncol Biol Phys. 2008; 70:1588-97.
PubMed
 
Madsen BL, Hsi RA, Pham HT, Fowler JF, Esagui L, Corman J.  Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int J Radiat Oncol Biol Phys. 2007; 67:1099-105.
PubMed
 

Figures

Grahic Jump Location
Figure.
A linear accelerator–based stereotactic radiosurgery and stereotactic body radiation therapy system.

The system incorporates a high-definition, 120-leaf multileaf collimator; robotic couch; cone-beam computed tomography; and stereoradiograph target–verification system. (Photo courtesy of Varian Medical Systems, Palo Alto, California. All rights reserved.)

Grahic Jump Location
Grahic Jump Location
Appendix Figure.
Summary of evidence search and selection.
Grahic Jump Location

Tables

Table Jump PlaceholderAppendix Table 1.  Electronic Database Searches
Table Jump PlaceholderAppendix Table 2.  Search Strings
Table Jump PlaceholderAppendix Table 3.  Summary of SBRT Studies, by Cancer Type
Table Jump PlaceholderAppendix Table 4.  Comparative Clinical Trials Involving SBRT
Table Jump PlaceholderAppendix Table 5.  Systematic Reviews

References

Bucci MK, Bevan A, Roach M 3rd.  Advances in radiation therapy: conventional to 3D, to IMRT, to 4D, and beyond. CA Cancer J Clin. 2005; 55:117-34.
PubMed
CrossRef
 
American Hospital Association.  AHA Guide to the Health Care Field 2009 Edition. Chicago: American Hosp Assoc; 2008.
 
Lanni TB Jr, Grills IS, Kestin LL, Robertson JM.  Stereotactic radiotherapy reduces treatment cost while improving overall survival and local control over standard fractionated radiation therapy for medically inoperable non-small-cell lung cancer. Am J Clin Oncol. 2010.
PubMed
 
Tipton KN, Sullivan N, Bruening W, Inamdar R, Launders J, Uhl S, et al.  Stereotactic Body Radiation Therapy. Technical Brief no. 6. (Prepared by ECRI Institute Evidence-based Practice Center under Contract no. HHSA-290-02-0019.) AHRQ Publication no. 10 (11)-EHC058-EF. Rockville, MD: Agency for Healthcare Research and Quality; May 2011. Available atwww.effectivehealthcare.ahrq.gov/reports/final.cfm.
 
Chawla S, Chen Y, Katz AW, Muhs AG, Philip A, Okunieff P. et al.  Stereotactic body radiotherapy for treatment of adrenal metastases. Int J Radiat Oncol Biol Phys. 2009; 75:71-5.
PubMed
 
Guckenberger M, Wulf J, Mueller G, Krieger T, Baier K, Gabor M. et al.  Dose-response relationship for image-guided stereotactic body radiotherapy of pulmonary tumors: relevance of 4D dose calculation. Int J Radiat Oncol Biol Phys. 2009; 74:47-54.
PubMed
 
Haasbeek CJ, Lagerwaard FJ, de Jaeger K, Slotman BJ, Senan S.  Outcomes of stereotactic radiotherapy for a new clinical stage I lung cancer arising postpneumonectomy. Cancer. 2009; 115:587-94.
PubMed
 
Lee MT, Kim JJ, Dinniwell R, Brierley J, Lockwood G, Wong R. et al.  Phase I study of individualized stereotactic body radiotherapy of liver metastases. J Clin Oncol. 2009; 27:1585-91.
PubMed
 
Milano MT, Katz AW, Okunieff P.  Patterns of recurrence after curative-intent radiation for oligometastases confined to one organ. Am J Clin Oncol. 2010; 33:157-63.
PubMed
 
Stephans KL, Djemil T, Reddy CA, Gajdos SM, Kolar M, Machuzak M. et al.  Comprehensive analysis of pulmonary function Test (PFT) changes after stereotactic body radiotherapy (SBRT) for stage I lung cancer in medically inoperable patients. J Thorac Oncol. 2009; 4:838-44.
PubMed
 
Lagerwaard FJ, Haasbeek CJ, Smit EF, Slotman BJ, Senan S.  Outcomes of risk-adapted fractionated stereotactic radiotherapy for stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2008; 70:685-92.
PubMed
 
Aoki M, Abe Y, Kondo H, Hatayama Y, Kawaguchi H, Fujimori A. et al.  Clinical outcome of stereotactic body radiotherapy of 54 Gy in nine fractions for patients with localized lung tumor using a custom-made immobilization system. Radiat Med. 2007; 25:289-94.
PubMed
 
Dawson LA, Eccles C, Craig T.  Individualized image guided iso-NTCP based liver cancer SBRT. Acta Oncol. 2006; 45:856-64.
PubMed
 
Guckenberger M, Heilman K, Wulf J, Mueller G, Beckmann G, Flentje M.  Pulmonary injury and tumor response after stereotactic body radiotherapy (SBRT): results of a serial follow-up CT study. Radiother Oncol. 2007; 85:435-42.
PubMed
 
Katoh N, Onimaru R, Sakuhara Y, Abo D, Shimizu S, Taguchi H. et al.  Real-time tumor-tracking radiotherapy for adrenal tumors. Radiother Oncol. 2008; 87:418-24.
PubMed
 
Tse RV, Hawkins M, Lockwood G, Kim JJ, Cummings B, Knox J. et al.  Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol. 2008; 26:657-64.
PubMed
 
Uematsu M, Shioda A, Suda A, Fukui T, Ozeki Y, Hama Y. et al.  Computed tomography-guided frameless stereotactic radiotherapy for stage I non-small cell lung cancer: a 5-year experience. Int J Radiat Oncol Biol Phys. 2001; 51:666-70.
PubMed
 
Xia T, Li H, Sun Q, Wang Y, Fan N, Yu Y. et al.  Promising clinical outcome of stereotactic body radiation therapy for patients with inoperable stage I/II non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2006; 66:117-25.
PubMed
 
Gunvén P, Blomgren H, Lax I.  Radiosurgery for recurring liver metastases after hepatectomy. Hepatogastroenterology. 2003; 50:1201-4.
PubMed
 
Sinha B, McGarry RC.  Stereotactic body radiotherapy for bilateral primary lung cancers: the Indiana University experience. Int J Radiat Oncol Biol Phys. 2006; 66:1120-4.
PubMed
 
Baumann P, Nyman J, Lax I, Friesland S, Hoyer M, RehnEricsson S. et al.  Factors important for efficacy of stereotactic body radiotherapy of medically inoperable stage I lung cancer. A retrospective analysis of patients treated in the Nordic countries. Acta Oncol. 2006; 45:787-95.
PubMed
 
Teh BS, Paulino AC, Lu HH, Chiu JK, Richardson S, Chiang S. et al.  Versatility of the Novalis system to deliver image-guided stereotactic body radiation therapy (SBRT) for various anatomical sites. Technol Cancer Res Treat. 2007; 6:347-54.
PubMed
 
Brown WT, Wu X, Wen BC, Fowler JF, Fayad F, Amendola BE. et al.  Early results of CyberKnife image-guided robotic stereotactic radiosurgery for treatment of lung tumors. Comput Aided Surg. 2007; 12:253-61.
PubMed
 
Norihisa Y, Nagata Y, Takayama K, Matsuo Y, Sakamoto T, Sakamoto M. et al.  Stereotactic body radiotherapy for oligometastatic lung tumors. Int J Radiat Oncol Biol Phys. 2008; 72:398-403.
PubMed
 
Kunos C, von Gruenigen V, Waggoner S, Brindle J, Zhang Y, Myers B. et al.  Cyberknife radiosurgery for squamous cell carcinoma of vulva after prior pelvic radiation therapy. Technol Cancer Res Treat. 2008; 7:375-80.
PubMed
 
Kim MS, Choi C, Yoo S, Cho C, Seo Y, Ji Y. et al.  Stereotactic body radiation therapy in patients with pelvic recurrence from rectal carcinoma. Jpn J Clin Oncol. 2008; 38:695-700.
PubMed
 
Jereczek-Fossa BA, Kowalczyk A, D'Onofrio A, Catalano G, Garibaldi C, Boboc G. et al.  Three-dimensional conformal or stereotactic reirradiation of recurrent, metastatic or new primary tumors. Analysis of 108 patients. Strahlenther Onkol. 2008; 184:36-40.
PubMed
 
Fritz P, Kraus HJ, Blaschke T, Mühlnickel W, Strauch K, Engel-Riedel W. et al.  Stereotactic, high single-dose irradiation of stage I non-small cell lung cancer (NSCLC) using four-dimensional CT scans for treatment planning. Lung Cancer. 2008; 60:193-9.
PubMed
 
Coon D, Gokhale AS, Burton SA, Heron DE, Ozhasoglu C, Christie N.  Fractionated stereotactic body radiation therapy in the treatment of primary, recurrent, and metastatic lung tumors: the role of positron emission tomography/computed tomography-based treatment planning. Clin Lung Cancer. 2008; 9:217-21.
PubMed
 
Choi BO, Choi IB, Jang HS, Kang YN, Jang JS, Bae SH. et al.  Stereotactic body radiation therapy with or without transarterial chemoembolization for patients with primary hepatocellular carcinoma: preliminary analysis. BMC Cancer. 2008; 8:351.
PubMed
 
Casamassima F, Masi L, Bonucci I, Polli C, Menichelli C, Gulisano M. et al.  Relevance of biologically equivalent dose values in outcome evaluation of stereotactic radiotherapy for lung nodules. Int J Radiat Oncol Biol Phys. 2008; 71:145-51.
PubMed
 
Pennathur A, Luketich JD, Heron DE, Abbas G, Burton S, Chen M. et al.  Stereotactic radiosurgery for the treatment of stage I non-small cell lung cancer in high-risk patients. J Thorac Cardiovasc Surg. 2009; 137:597-604.
PubMed
 
McCammon R, Schefter TE, Gaspar LE, Zaemisch R, Gravdahl D, Kavanagh B.  Observation of a dose-control relationship for lung and liver tumors after stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2009; 73:112-8.
PubMed
 
Choi CW, Cho CK, Yoo SY, Kim MS, Yang KM, Yoo HJ. et al.  Image-guided stereotactic body radiation therapy in patients with isolated para-aortic lymph node metastases from uterine cervical and corpus cancer. Int J Radiat Oncol Biol Phys. 2009; 74:147-53.
PubMed
 
Ahn SH, Han MS, Yoon JH, Jeon SY, Kim CH, Yoo HJ. et al.  Treatment of stage I non-small cell lung cancer with CyberKnife, image-guided robotic stereotactic radiosurgery. Oncol Rep. 2009; 21:693-6.
PubMed
 
Nakagawa K, Aoki Y, Tago M, Terahara A, Ohtomo K.  Megavoltage CT-assisted stereotactic radiosurgery for thoracic tumors: original research in the treatment of thoracic neoplasms. Int J Radiat Oncol Biol Phys. 2000; 48:449-57.
PubMed
 
Harada T, Shirato H, Ogura S, Oizumi S, Yamazaki K, Shimizu S. et al.  Real-time tumor-tracking radiation therapy for lung carcinoma by the aid of insertion of a gold marker using bronchofiberscopy. Cancer. 2002; 95:1720-7.
PubMed
 
Whyte RI, Crownover R, Murphy MJ, Martin DP, Rice TW, DeCamp MM Jr. et al.  Stereotactic radiosurgery for lung tumors: preliminary report of a phase I trial. Ann Thorac Surg. 2003; 75:1097-101.
PubMed
 
Lee SW, Choi EK, Park HJ, Ahn SD, Kim JH, Kim KJ. et al.  Stereotactic body frame based fractionated radiosurgery on consecutive days for primary or metastatic tumors in the lung. Lung Cancer. 2003; 40:309-15.
PubMed
 
Onishi H, Kuriyama K, Komiyama T, Tanaka S, Sano N, Marino K. et al.  Clinical outcomes of stereotactic radiotherapy for stage I non-small cell lung cancer using a novel irradiation technique: patient self-controlled breath-hold and beam switching using a combination of linear accelerator and CT scanner. Lung Cancer. 2004; 45:45-55.
PubMed
 
Ishimori T, Saga T, Nagata Y, Nakamoto Y, Higashi T, Mamede M. et al.  18F-FDG and 11C-methionine PET for evaluation of treatment response of lung cancer after stereotactic radiotherapy. Ann Nucl Med. 2004; 18:669-74.
PubMed
 
Song DY, Benedict SH, Cardinale RM, Chung TD, Chang MG, Schmidt-Ullrich RK.  Stereotactic body radiation therapy of lung tumors: preliminary experience using normal tissue complication probability-based dose limits. Am J Clin Oncol. 2005; 28:591-6.
PubMed
 
Shioyama Y, Nakamura K, Anai S, Sasaki T, Ooga S, Saku M. et al.  Stereotactic radiotherapy for lung and liver tumors using a body cast system: setup accuracy and preliminary clinical outcome. Radiat Med. 2005; 23:407-13.
PubMed
 
Hoyer M, Roed H, Sengelov L, Traberg A, Ohlhuis L, Pedersen J. et al.  Phase-II study on stereotactic radiotherapy of locally advanced pancreatic carcinoma. Radiother Oncol. 2005; 76:48-53.
PubMed
 
Zimmermann FB, Geinitz H, Schill S, Thamm R, Nieder C, Schratzenstaller U. et al.  Stereotactic hypofractionated radiotherapy in stage I (T1-2 N0 M0) non-small-cell lung cancer (NSCLC). Acta Oncol. 2006; 45:796-801.
PubMed
 
Yoon SM, Choi EK, Lee SW, Yi BY, Ahn SD, Shin SS. et al.  Clinical results of stereotactic body frame based fractionated radiation therapy for primary or metastatic thoracic tumors. Acta Oncol. 2006; 45:1108-14.
PubMed
 
Timmerman R, McGarry R, Yiannoutsos C, Papiez L, Tudor K, DeLuca J. et al.  Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol. 2006; 24:4833-9.
PubMed
 
Svedman C, Sandström P, Pisa P, Blomgren H, Lax I, Kälkner KM. et al.  A prospective phase II trial of using extracranial stereotactic radiotherapy in primary and metastatic renal cell carcinoma. Acta Oncol. 2006; 45:870-5.
PubMed
 
Nuyttens JJ, Prévost JB, Praag J, Hoogeman M, Van Klaveren RJ, Levendag PC. et al.  Lung tumor tracking during stereotactic radiotherapy treatment with the CyberKnife: marker placement and early results. Acta Oncol. 2006; 45:961-5.
PubMed
 
Le QT, Loo BW, Ho A, Cotrutz C, Koong AC, Wakelee H. et al.  Results of a phase I dose-escalation study using single-fraction stereotactic radiotherapy for lung tumors. J Thorac Oncol. 2006; 1:802-9.
PubMed
 
Hoyer M, Roed H, Traberg Hansen A, Ohlhuis L, Petersen J, Nellemann H. et al.  Phase II study on stereotactic body radiotherapy of colorectal metastases. Acta Oncol. 2006; 45:823-30.
PubMed
 
Hodge W, Tom WA, Jaradat HA, Orton NP, Khuntia D, Traynor A. et al.  Feasibility report of image guided stereotactic body radiotherapy (IG-SBRT) with tomotherapy for early stage medically inoperable lung cancer using extreme hypofractionation. Acta Oncol. 2006; 45:890-6.
PubMed
 
Ricardi U, Guarneri A, Mantovani C, Ciammella P, Giglioli FR, Ragona R.  Stereotactic body radiation therapy for early non-small cell lung cancer: experience at the University of Turin. J Thorac Oncol. 2007; 2:S47.
PubMed
 
Ponsky LE, Mahadevan A, Gill IS, Djemil T, Novick AC.  Renal radiosurgery: initial clinical experience with histological evaluation. Surg Innov. 2007; 14:265-9.
PubMed
 
Salazar OM, Sandhu TS, Lattin PB, Chang JH, Lee CK, Groshko GA. et al.  Once-weekly, high-dose stereotactic body radiotherapy for lung cancer: 6-year analysis of 60 early-stage, 42 locally advanced, and 7 metastatic lung cancers. Int J Radiat Oncol Biol Phys. 2008; 72:707-15.
PubMed
 
Chang JY, Balter PA, Dong L, Yang Q, Liao Z, Jeter M. et al.  Stereotactic body radiation therapy in centrally and superiorly located stage I or isolated recurrent non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2008; 72:967-71.
PubMed
 
Kopek N, Paludan M, Petersen J, Hansen AT, Grau C, Høyer M.  Co-morbidity index predicts for mortality after stereotactic body radiotherapy for medically inoperable early-stage non-small cell lung cancer. Radiother Oncol. 2009; 93:402-7.
PubMed
 
Collins BT, Vahdat S, Erickson K, Collins SP, Suy S, Yu X. et al.  Radical cyberknife radiosurgery with tumor tracking: an effective treatment for inoperable small peripheral stage I non-small cell lung cancer. J Hematol Oncol. 2009; 2:1.
PubMed
 
Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J. et al.  Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010; 303:1070-6.
PubMed
 
Polistina F, Costantin G, Casamassima F, Francescon P, Guglielmi R, Panizzoni G. et al.  Unresectable locally advanced pancreatic cancer: a multimodal treatment using neoadjuvant chemoradiotherapy (gemcitabine plus stereotactic radiosurgery) and subsequent surgical exploration. Ann Surg Oncol. 2010; 17:2092-101.
PubMed
 
Dunlap NE, Cai J, Biedermann GB, Yang W, Benedict SH, Sheng K. et al.  Chest wall volume receiving >30 Gy predicts risk of severe pain and/or rib fracture after lung stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2010; 76:796-801.
PubMed
 
Crabtree TD, Denlinger CE, Meyers BF, El Naqa I, Zoole J, Krupnick AS. et al.  Stereotactic body radiation therapy versus surgical resection for stage I non-small cell lung cancer. J Thorac Cardiovasc Surg. 2010; 140:377-86.
PubMed
 
Louis C, Dewas S, Mirabel X, Lacornerie T, Adenis A, Bonodeau F. et al.  Stereotactic radiotherapy of hepatocellular carcinoma: preliminary results. Technol Cancer Res Treat. 2010; 9:479-87.
PubMed
 
Cárdenes HR, Price TR, Perkins SM, Maluccio M, Kwo P, Breen TE. et al.  Phase I feasibility trial of stereotactic body radiation therapy for primary hepatocellular carcinoma. Clin Transl Oncol. 2010; 12:218-25.
PubMed
 
Shin YJ, Kim MS, Yoo SY, Cho CK, Seo YS, Kang JK. et al.  Pilot study of stereotactic body radiotherapy for huge hepatocellular carcinoma unsuitable for other therapies. Tumori. 2010; 96:65-70.
PubMed
 
Yang ZX, Wang D, Wang G, Zhang QH, Liu JM, Peng P. et al.  Clinical study of recombinant adenovirus-p53 combined with fractionated stereotactic radiotherapy for hepatocellular carcinoma. J Cancer Res Clin Oncol. 2010; 136:625-30.
PubMed
 
Kim JH, Kim MS, Yoo SY, Lim SM, Lee GH, Yi KH.  Stereotactic body radiotherapy for refractory cervical lymph node recurrence of nonanaplastic thyroid cancer. Otolaryngol Head Neck Surg. 2010; 142:338-43.
PubMed
 
Kang JK, Kim MS, Kim JH, Yoo SY, Cho CK, Yang KM. et al.  Oligometastases confined one organ from colorectal cancer treated by SBRT. Clin Exp Metastasis. 2010; 27:273-8.
PubMed
 
Kopek N, Holt MI, Hansen AT, Høyer M.  Stereotactic body radiotherapy for unresectable cholangiocarcinoma. Radiother Oncol. 2010; 94:47-52.
PubMed
 
Vahdat S, Oermann EK, Collins SP, Yu X, Abedalthagafi M, Debrito P. et al.  CyberKnife radiosurgery for inoperable stage IA non-small cell lung cancer: 18F-fluorodeoxyglucose positron emission tomography/computed tomography serial tumor response assessment. J Hematol Oncol. 2010; 3:6.
PubMed
 
Kim MS, Yoo SY, Cho CK, Yoo HJ, Choi CW, Seo YS. et al.  Stereotactic body radiation therapy using three fractions for isolated lung recurrence from colorectal cancer. Oncology. 2009; 76:212-9.
PubMed
 
Rusthoven KE, Kavanagh BD, Cardenes H, Stieber VW, Burri SH, Feigenberg SJ. et al.  Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases. J Clin Oncol. 2009; 27:1572-8.
PubMed
 
Rusthoven KE, Kavanagh BD, Burri SH, Chen C, Cardenes H, Chidel MA. et al.  Multi-institutional phase I/II trial of stereotactic body radiation therapy for lung metastases. J Clin Oncol. 2009; 27:1579-84.
PubMed
 
van der Voort van Zyp NC, Prévost JB, Hoogeman MS, Praag J, van der Holt B, Levendag PC. et al.  Stereotactic radiotherapy with real-time tumor tracking for non-small cell lung cancer: clinical outcome. Radiother Oncol. 2009; 91:296-300.
PubMed
 
Schellenberg D, Goodman KA, Lee F, Chang S, Kuo T, Ford JM. et al.  Gemcitabine chemotherapy and single-fraction stereotactic body radiotherapy for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2008; 72:678-86.
PubMed
 
Hof H, Hoess A, Oetzel D, Debus J, Herfarth K.  Stereotactic single-dose radiotherapy of lung metastases. Strahlenther Onkol. 2007; 183:673-8.
PubMed
 
Hof H, Muenter M, Oetzel D, Hoess A, Debus J, Herfarth K.  Stereotactic single-dose radiotherapy (radiosurgery) of early stage nonsmall-cell lung cancer (NSCLC). Cancer. 2007; 110:148-55.
PubMed
 
Nuyttens JJ, Prevost JB, Van der Voort van Zijp NC, Hoogeman M, Levendag PC.  Curative stereotactic robotic radiotherapy treatment for extracranial, extrapulmonary, extrahepatic, and extraspinal tumors: technique, early results, and toxicity. Technol Cancer Res Treat. 2007; 6:605-10.
PubMed
 
Ernst-Stecken A, Lambrecht U, Mueller R, Sauer R, Grabenbauer G.  Hypofractionated stereotactic radiotherapy for primary and secondary intrapulmonary tumors: first results of a phase I/II study. Strahlenther Onkol. 2006; 182:696-702.
PubMed
 
Méndez Romero A, Wunderink W, Hussain SM, DePooter JA, Heijmen BJ, Nowak PC. et al.  Stereotactic body radiation therapy for primary and metastatic liver tumors: a single institution phase i-ii study. Acta Oncol. 2006; 45:831-7.
PubMed
 
Wulf J, Guckenberger M, Haedinger U, Oppitz U, Mueller G, Baier K. et al.  Stereotactic radiotherapy of primary liver cancer and hepatic metastases. Acta Oncol. 2006; 45:838-47.
PubMed
 
Wulf J, Hädinger U, Oppitz U, Thiele W, Ness-Dourdoumas R, Flentje M.  Stereotactic radiotherapy of targets in the lung and liver. Strahlenther Onkol. 2001; 177:645-55.
PubMed
 
Mahadevan A, Jain S, Goldstein M, Miksad R, Pleskow D, Sawhney M. et al.  Stereotactic body radiotherapy and gemcitabine for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2010; 78:735-42.
PubMed
 
Chang DT, Schellenberg D, Shen J, Kim J, Goodman KA, Fisher GA. et al.  Stereotactic radiotherapy for unresectable adenocarcinoma of the pancreas. Cancer. 2009; 115:665-72.
PubMed
 
Milano MT, Chen Y, Katz AW, Philip A, Schell MC, Okunieff P.  Central thoracic lesions treated with hypofractionated stereotactic body radiotherapy. Radiother Oncol. 2009; 91:301-6.
PubMed
 
Stephans KL, Djemil T, Reddy CA, Gajdos SM, Kolar M, Mason D. et al.  A comparison of two stereotactic body radiation fractionation schedules for medically inoperable stage I non-small cell lung cancer: the Cleveland Clinic experience. J Thorac Oncol. 2009; 4:976-82.
PubMed
 
Song SY, Choi W, Shin SS, Lee SW, Ahn SD, Kim JH. et al.  Fractionated stereotactic body radiation therapy for medically inoperable stage I lung cancer adjacent to central large bronchus. Lung Cancer. 2009; 66:89-93.
PubMed
 
Takeda A, Sanuki N, Kunieda E, Ohashi T, Oku Y, Takeda T. et al.  Stereotactic body radiotherapy for primary lung cancer at a dose of 50 Gy total in five fractions to the periphery of the planning target volume calculated using a superposition algorithm. Int J Radiat Oncol Biol Phys. 2009; 73:442-8.
PubMed
 
Baumann P, Nyman J, Hoyer M, Gagliardi G, Lax I, Wennberg B. et al.  Stereotactic body radiotherapy for medically inoperable patients with stage I non-small cell lung cancer—a first report of toxicity related to COPD/CVD in a non-randomized prospective phase II study. Radiother Oncol. 2008; 88:359-67.
PubMed
 
Onimaru R, Fujino M, Yamazaki K, Onodera Y, Taguchi H, Katoh N. et al.  Steep dose-response relationship for stage I non-small-cell lung cancer using hypofractionated high-dose irradiation by real-time tumor-tracking radiotherapy. Int J Radiat Oncol Biol Phys. 2008; 70:374-81.
PubMed
 
Svedman C, Karlsson K, Rutkowska E, Sandström P, Blomgren H, Lax I. et al.  Stereotactic body radiotherapy of primary and metastatic renal lesions for patients with only one functioning kidney. Acta Oncol. 2008; 47:1578-83.
PubMed
 
Joyner M, Salter BJ, Papanikolaou N, Fuss M.  Stereotactic body radiation therapy for centrally located lung lesions. Acta Oncol. 2006; 45:802-7.
PubMed
 
Hamamoto Y, Kataoka M, Yamashita M, Shinkai T, Kubo Y, Sugawara Y. et al.  Local control of metastatic lung tumors treated with SBRT of 48 Gy in four fractions: in comparison with primary lung cancer. Jpn J Clin Oncol. 2010; 40:125-9.
PubMed
 
Bradley JD, El Naqa I, Drzymala RE, Trovo M, Jones G, Denning MD.  Stereotactic body radiation therapy for early-stage non-small-cell lung cancer: the pattern of failure is distant. Int J Radiat Oncol Biol Phys. 2010; 77:1146-50.
PubMed
 
Unger K, Ju A, Oermann E, Suy S, Yu X, Vahdat S. et al.  CyberKnife for hilar lung tumors: report of clinical response and toxicity. J Hematol Oncol. 2010; 3:39.
PubMed
 
Trovo M, Linda A, El Naqa I, Javidan-Nejad C, Bradley J.  Early and late lung radiographic injury following stereotactic body radiation therapy (SBRT). Lung Cancer. 2010; 69:77-85.
PubMed
 
Stintzing S, Hoffmann RT, Heinemann V, Kufeld M, Muacevic A.  Frameless single-session robotic radiosurgery of liver metastases in colorectal cancer patients. Eur J Cancer. 2010; 46:1026-32.
PubMed
 
Goodman KA, Wiegner EA, Maturen KE, Zhang Z, Mo Q, Yang G. et al.  Dose-escalation study of single-fraction stereotactic body radiotherapy for liver malignancies. Int J Radiat Oncol Biol Phys. 2010; 78:486-93.
PubMed
 
Stintzing S, Hoffmann RT, Heinemann V, Kufeld M, Rentsch M, Muacevic A.  Radiosurgery of liver tumors: value of robotic radiosurgical device to treat liver tumors. Ann Surg Oncol. 2010; 17:2877-83.
PubMed
 
Jorcano S, Molla M, Escude L, Sanz S, Hidalgo A, Toscas JI. et al.  Hypofractionated extracranial stereotactic radiotherapy boost for gynecologic tumors: a promising alternative to high-dose rate brachytherapy. Technol Cancer Res Treat. 2010; 9:509-14.
PubMed
 
Guckenberger M, Bachmann J, Wulf J, Mueller G, Krieger T, Baier K. et al.  Stereotactic body radiotherapy for local boost irradiation in unfavourable locally recurrent gynaecological cancer. Radiother Oncol. 2010; 94:53-9.
PubMed
 
Milano MT, Philip A, Okunieff P.  Analysis of patients with oligometastases undergoing two or more curative-intent stereotactic radiotherapy courses. Int J Radiat Oncol Biol Phys. 2009; 73:832-7.
PubMed
 
Koto M, Takai Y, Ogawa Y, Matsushita H, Takeda K, Takahashi C. et al.  A phase II study on stereotactic body radiotherapy for stage I non-small cell lung cancer. Radiother Oncol. 2007; 85:429-34.
PubMed
 
Grills IS, Mangona VS, Welsh R, Chmielewski G, McInerney E, Martin S. et al.  Outcomes after stereotactic lung radiotherapy or wedge resection for stage I non-small-cell lung cancer. J Clin Oncol. 2010; 28:928-35.
PubMed
 
Seo YS, Kim MS, Yoo SY, Cho CK, Choi CW, Kim JH. et al.  Preliminary result of stereotactic body radiotherapy as a local salvage treatment for inoperable hepatocellular carcinoma. J Surg Oncol. 2010; 102:209-14.
PubMed
 
Townsend NC, Huth BJ, Ding W, Garber B, Mooreville M, Arrigo S. et al.  Acute toxicity after cyberknife-delivered hypofractionated radiotherapy for treatment of prostate cancer. Am J Clin Oncol. 2011; 34:6-10.
PubMed
 
Son SH, Choi BO, Ryu MR, Kang YN, Jang JS, Bae SH. et al.  Stereotactic body radiotherapy for patients with unresectable primary hepatocellular carcinoma: dose-volumetric parameters predicting the hepatic complication. Int J Radiat Oncol Biol Phys. 2010; 78:1073-80.
PubMed
 
Moll M, Escude L, Nouet P, Popowski Y, Hidalgo A, Rouzaud M. et al.  Fractionated stereotactic radiotherapy boost for gynecologic tumors: an alternative to brachytherapy? Int J Radiat Oncol Biol Phys. 2005; 62:118-24.
PubMed
 
King CR, Brooks JD, Gill H, Pawlicki T, Cotrutz C, Presti JC Jr.  Stereotactic body radiotherapy for localized prostate cancer: interim results of a prospective phase II clinical trial. Int J Radiat Oncol Biol Phys. 2009; 73:1043-8.
PubMed
 
Yamashita H, Kobayashi-Shibata S, Terahara A, Okuma K, Haga A, Wakui R. et al.  Prescreening based on the presence of CT-scan abnormalities and biomarkers (KL-6 and SP-D) may reduce severe radiation pneumonitis after stereotactic radiotherapy. Radiat Oncol. 2010; 5:32.
PubMed
 
Takeda A, Ohashi T, Kunieda E, Enomoto T, Sanuki N, Takeda T. et al.  Early graphical appearance of radiation pneumonitis correlates with the severity of radiation pneumonitis after stereotactic body radiotherapy (SBRT) in patients with lung tumors. Int J Radiat Oncol Biol Phys. 2010; 77:685-90.
PubMed
 
Bolzicco G, Favretto MS, Scremin E, Tambone C, Tasca A, Guglielmi R.  Image-guided stereotactic body radiation therapy for clinically localized prostate cancer: preliminary clinical results. Technol Cancer Res Treat. 2010; 9:473-7.
PubMed
 
Oermann EK, Slack RS, Hanscom HN, Lei S, Suy S, Park HU. et al.  A pilot study of intensity modulated radiation therapy with hypofractionated stereotactic body radiation therapy (SBRT) boost in the treatment of intermediate- to high-risk prostate cancer. Technol Cancer Res Treat. 2010; 9:453-62.
PubMed
 
Aluwini S, van Rooij P, Hoogeman M, Bangma C, Kirkels WJ, Incrocci L. et al.  CyberKnife stereotactic radiotherapy as monotherapy for low- to intermediate-stage prostate cancer: early experience, feasibility, and tolerance. J Endourol. 2010; 24:865-9.
PubMed
 
Freeman DE, King CR.  Stereotactic body radiotherapy for low-risk prostate cancer: five-year outcomes. Radiat Oncol. 2011; 6:3.
PubMed
 
Meyer JL, Verhey L, Xia P, Wong J.  New technologies in the radiotherapy clinic. Front Radiat Ther Oncol. 2007; 40:1-17.
PubMed
 
MEDCAC Meeting: Radiation Therapy for Localized Prostate Cancer. Baltimore, MD: Centers for Medicare & Medicaid Services; 21 April 2010. Accessed atwww.cms.gov/medicare-coverage-database/details/medcac-meeting-details.aspx?&bc=BAAAAAAAAAAA&MEDCACId=54&on 15 March 2011.
 
Nguyen NP, Garland L, Welsh J, Hamilton R, Cohen D, Vinh-Hung V.  Can stereotactic fractionated radiation therapy become the standard of care for early stage non-small cell lung carcinoma. Cancer Treat Rev. 2008; 34:719-27.
PubMed
 
Brock J, Ashley S, Bedford J, Nioutsikou E, Partridge M, Brada M.  Review of hypofractionated small volume radiotherapy for early-stage non-small cell lung cancer. Clin Oncol (R Coll Radiol). 2008; 20:666-76.
PubMed
 
Chi A, Liao Z, Nguyen NP, Xu J, Stea B, Komaki R.  Systemic review of the patterns of failure following stereotactic body radiation therapy in early-stage non-small-cell lung cancer: clinical implications. Radiother Oncol. 2010; 94:1-11.
PubMed
 
Calcerrada Díaz-Santos N, BlascoAmaro JA, Cardiel GA, Andradas Aragonés E.  The safety and efficacy of robotic image-guided radiosurgery system treatment for intra- and extracranial lesions: a systematic review of the literature. Radiother Oncol. 2008; 89:245-53.
PubMed
 
Khrizman P, Small W Jr, Dawson L, Benson AB 3rd.  The use of stereotactic body radiation therapy in gastrointestinal malignancies in locally advanced and metastatic settings. Clin Colorectal Cancer. 2010; 9:136-43.
PubMed
 
Sawrie SM, Fiveash JB, Caudell JJ.  Stereotactic body radiation therapy for liver metastases and primary hepatocellular carcinoma: normal tissue tolerances and toxicity. Cancer Control. 2010; 17:111-9.
PubMed
 
Siva S, MacManus M, Ball D.  Stereotactic radiotherapy for pulmonary oligometastases: a systematic review. J Thorac Oncol. 2010; 5:1091-9.
PubMed
 
Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B. et al.  Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010; 37:4078-101.
PubMed
 
Chang BK, Timmerman RD.  Stereotactic body radiation therapy: a comprehensive review. Am J Clin Oncol. 2007; 30:637-44.
PubMed
 
Olsen CC, Welsh J, Kavanagh BD, Franklin W, McCarter M, Cardenes HR. et al.  Microscopic and macroscopic tumor and parenchymal effects of liver stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2009; 73:1414-24.
PubMed
 
Seong J, Lee IJ, Shim SJ, Lim do H, Kim TH, Kim JH. et al.  A multicenter retrospective cohort study of practice patterns and clinical outcome on radiotherapy for hepatocellular carcinoma in Korea. Liver Int. 2009; 29:147-52.
PubMed
 
Beitler JJ, Makara D, Silverman P, Lederman G.  Definitive, high-dose-per-fraction, conformal, stereotactic external radiation for renal cell carcinoma. Am J Clin Oncol. 2004; 27:646-8.
PubMed
 
Henderson M, McGarry R, Yiannoutsos C, Fakiris A, Hoopes D, Williams M. et al.  Baseline pulmonary function as a predictor for survival and decline in pulmonary function over time in patients undergoing stereotactic body radiotherapy for the treatment of stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2008; 72:404-9.
PubMed
 
Kawase T, Takeda A, Kunieda E, Kokubo M, Kamikubo Y, Ishibashi R. et al.  Extrapulmonary soft-tissue fibrosis resulting from hypofractionated stereotactic body radiotherapy for pulmonary nodular lesions. Int J Radiat Oncol Biol Phys. 2009; 74:349-54.
PubMed
 
Ricardi U, Filippi AR, Guarneri A, Giglioli FR, Mantovani C, Fiandra C. et al.  Dosimetric predictors of radiation-induced lung injury in stereotactic body radiation therapy. Acta Oncol. 2009; 48:571-7.
PubMed
 
Rusthoven KE, Hammerman SF, Kavanagh BD, Birtwhistle MJ, Stares M, Camidge DR.  Is there a role for consolidative stereotactic body radiation therapy following first-line systemic therapy for metastatic lung cancer? A patterns-of-failure analysis. Acta Oncol. 2009; 48:578-83.
PubMed
 
Hoopes DJ, Tann M, Fletcher JW, Forquer JA, Lin PF, Lo SS. et al.  FDG-PET and stereotactic body radiotherapy (SBRT) for stage I non-small-cell lung cancer. Lung Cancer. 2007; 56:229-34.
PubMed
 
Muacevic A, Drexler C, Wowra B, Schweikard A, Schlaefer A, Hoffmann RT. et al.  Technical description, phantom accuracy, and clinical feasibility for single-session lung radiosurgery using robotic image-guided real-time respiratory tumor tracking. Technol Cancer Res Treat. 2007; 6:321-8.
PubMed
 
Paludan M, Traberg Hansen A, Petersen J, Grau C, Høyer M.  Aggravation of dyspnea in stage I non-small cell lung cancer patients following stereotactic body radiotherapy: is there a dose-volume dependency?. Acta Oncol. 2006; 45:818-22.
PubMed
 
Scorsetti M, Navarria P, Facoetti A, Lattuada P, Urso G, Mirandola A. et al.  Effectiveness of stereotactic body radiotherapy in the treatment of inoperable early-stage lung cancer. Anticancer Res. 2007; 27:3615-9.
PubMed
 
Hof H, Zgoda J, Nill S, Hoess A, Kopp-Schneider A, Herfarth K. et al.  Time- and dose-dependency of radiographic normal tissue changes of the lung after stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 2010; 77:1369-74.
PubMed
 
Gerszten PC, Ozhasoglu C, Burton SA, Welch WC, Vogel WJ, Atkins BA. et al.  CyberKnife frameless single-fraction stereotactic radiosurgery for tumors of the sacrum. Neurosurg Focus. 2003; 15:7.
PubMed
 
Fuller DB, Naitoh J, Lee C, Hardy S, Jin H.  Virtual HDR CyberKnife treatment for localized prostatic carcinoma: dosimetry comparison with HDR brachytherapy and preliminary clinical observations. Int J Radiat Oncol Biol Phys. 2008; 70:1588-97.
PubMed
 
Madsen BL, Hsi RA, Pham HT, Fowler JF, Esagui L, Corman J.  Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int J Radiat Oncol Biol Phys. 2007; 67:1099-105.
PubMed
 

Letters

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Comments

Submit a Comment
Submit a Comment

Supplements

Summary for Patients

Clinical Slide Sets

Terms of Use

The In the Clinic® slide sets are owned and copyrighted by the American College of Physicians (ACP). All text, graphics, trademarks, and other intellectual property incorporated into the slide sets remain the sole and exclusive property of the ACP. The slide sets may be used only by the person who downloads or purchases them and only for the purpose of presenting them during not-for-profit educational activities. Users may incorporate the entire slide set or selected individual slides into their own teaching presentations but may not alter the content of the slides in any way or remove the ACP copyright notice. Users may make print copies for use as hand-outs for the audience the user is personally addressing but may not otherwise reproduce or distribute the slides by any means or media, including but not limited to sending them as e-mail attachments, posting them on Internet or Intranet sites, publishing them in meeting proceedings, or making them available for sale or distribution in any unauthorized form, without the express written permission of the ACP. Unauthorized use of the In the Clinic slide sets will constitute copyright infringement.

Toolkit

Want to Subscribe?

Learn more about subscription options

Advertisement
Related Articles
Related Point of Care
Topic Collections
PubMed Articles
Forgot your password?
Enter your username and email address. We'll send you a reminder to the email address on record.
(Required)
(Required)