Skip Navigation
American College of Physicians Logo
  • Subscribe
  • Submit a Manuscript
  • Sign In
    Sign in below to access your subscription for full content
    INDIVIDUAL SIGN IN
    Sign In|Set Up Account
    You will be directed to acponline.org to register and create your Annals account
    INSTITUTIONAL SIGN IN
    Open Athens|Shibboleth|Log In
    Annals of Internal Medicine
    SUBSCRIBE
    Subscribe to Annals of Internal Medicine.
    You will be directed to acponline.org to complete your purchase.
Annals of Internal Medicine Logo Menu
  • Latest
  • Issues
  • Channels
  • CME/MOC
  • In the Clinic
  • Journal Club
  • Web Exclusives
  • Author Info
Advanced Search
  • ‹ PREV ARTICLE
  • This Issue
  • NEXT ARTICLE ›
Conferences |20 January 2009

Antiviral Therapy for Adults With Chronic Hepatitis B: A Systematic Review for a National Institutes of Health Consensus Development Conference Free

Tatyana A. Shamliyan, MD, MS; Roderick MacDonald, MS; Aasma Shaukat, MD, MPH; Brent C. Taylor, PhD, MPH; Jian-Min Yuan, MD, PhD; James R. Johnson, MD; James Tacklind, BS; Indulis Rutks, BS; Robert L. Kane, MD; Timothy J. Wilt, MD, MPH

Tatyana A. Shamliyan, MD, MS
From the Minnesota Evidence-based Practice Center, University of Minnesota School of Public Health, Minneapolis Veterans Affairs Center for Chronic Disease Outcomes Research, and the University of Minnesota Medical School, Minneapolis, Minnesota.

Roderick MacDonald, MS
From the Minnesota Evidence-based Practice Center, University of Minnesota School of Public Health, Minneapolis Veterans Affairs Center for Chronic Disease Outcomes Research, and the University of Minnesota Medical School, Minneapolis, Minnesota.

Aasma Shaukat, MD, MPH
From the Minnesota Evidence-based Practice Center, University of Minnesota School of Public Health, Minneapolis Veterans Affairs Center for Chronic Disease Outcomes Research, and the University of Minnesota Medical School, Minneapolis, Minnesota.

Brent C. Taylor, PhD, MPH
From the Minnesota Evidence-based Practice Center, University of Minnesota School of Public Health, Minneapolis Veterans Affairs Center for Chronic Disease Outcomes Research, and the University of Minnesota Medical School, Minneapolis, Minnesota.

Jian-Min Yuan, MD, PhD
From the Minnesota Evidence-based Practice Center, University of Minnesota School of Public Health, Minneapolis Veterans Affairs Center for Chronic Disease Outcomes Research, and the University of Minnesota Medical School, Minneapolis, Minnesota.

James R. Johnson, MD
From the Minnesota Evidence-based Practice Center, University of Minnesota School of Public Health, Minneapolis Veterans Affairs Center for Chronic Disease Outcomes Research, and the University of Minnesota Medical School, Minneapolis, Minnesota.

James Tacklind, BS
From the Minnesota Evidence-based Practice Center, University of Minnesota School of Public Health, Minneapolis Veterans Affairs Center for Chronic Disease Outcomes Research, and the University of Minnesota Medical School, Minneapolis, Minnesota.

Indulis Rutks, BS
From the Minnesota Evidence-based Practice Center, University of Minnesota School of Public Health, Minneapolis Veterans Affairs Center for Chronic Disease Outcomes Research, and the University of Minnesota Medical School, Minneapolis, Minnesota.

Robert L. Kane, MD
From the Minnesota Evidence-based Practice Center, University of Minnesota School of Public Health, Minneapolis Veterans Affairs Center for Chronic Disease Outcomes Research, and the University of Minnesota Medical School, Minneapolis, Minnesota.

Timothy J. Wilt, MD, MPH
From the Minnesota Evidence-based Practice Center, University of Minnesota School of Public Health, Minneapolis Veterans Affairs Center for Chronic Disease Outcomes Research, and the University of Minnesota Medical School, Minneapolis, Minnesota.

Article, Author, and Disclosure Information
Author, Article, and Disclosure Information
  • From the Minnesota Evidence-based Practice Center, University of Minnesota School of Public Health, Minneapolis Veterans Affairs Center for Chronic Disease Outcomes Research, and the University of Minnesota Medical School, Minneapolis, Minnesota.

    Disclaimer: The authors of this report are responsible for its content. Statements in the paper should not be construed as endorsement by the Agency for Healthcare Research and Quality or the U.S. Department of Health and Human Services.

    Acknowledgment: The authors thank the technical expert panel members Dr. Miriam Alter, Dr. Gary Davis, Dr. Daryl Lau, Dr. Michael Sorrell, and Dr. Myron Tong for their scientific and clinical input throughout this project; Shilpa Amin, MD, MBSC, AHRQ Task Order Officer, for her guidance throughout the project; and Dr. John Ward for reviewing and commenting on the draft. They also thank the librarians Judith Stanke and Dr. Del Reed for their contributions to the literature search; Maureen Carlyle and Marilyn Eells for their excellent technical assistance in preparation of the full evidence report and this manuscript; and Rebecca Schultz and Nancy Russell for their assistance with formatting the tables.

    Grant Support: By Agency for Healthcare Research and Quality, U.S. Department of Health and Human Services contract number 290-02-0009.

    Potential Financial Conflicts of Interest: None disclosed.

    Requests for Single Reprints: Tatyana A. Shamliyan, MD, MS, Division of Health Policy and Management, University of Minnesota School of Public Health, D351 Mayo (MMC 197), 420 Delaware Street SE, Minneapolis, MN 55455; e-mail, shaml005@umn.edu.

    Current Author Addresses: Drs. Shamliyan and Kane: Division of Health Policy and Management, University of Minnesota School of Public Health, D351 Mayo (MMC 197), 420 Delaware Street SE, Minneapolis, MN.

    Mr. MacDonald, Drs. Taylor and Wilt, and Mr. Rutks: Center for Chronic Disease Outcomes Research, Minneapolis Veterans Affairs Medical Center, 1 Veterans Drive, Minneapolis, MN 55417.

    Dr. Shaukat: Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, 420 Delaware Street SE (MMC 36), Minneapolis, MN 55455.

    Dr. Yuan: Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Room 300, West Bank Office Building, 1300 South Second Street, Minneapolis, MN 55454.

    Dr. Johnson: Department of Infectious Diseases, Minneapolis Veterans Affairs Medical Center (111-F), 1 Veterans Drive, Minneapolis, MN 55417.

    Mr. Tacklind: Agency for Healthcare Research and Quality Center for Chronic Disease Outcomes Research and the Cochrane Prostatic Diseases and Urologic Cancers Group, Minneapolis Veterans Affairs Medical Center, 1 Veterans Drive, Minneapolis, MN 55417.

    Author Contributions: Conception and design: T.A. Shamliyan, R.L. Kane, T.J. Wilt.

    Analysis and interpretation of the data: T.A. Shamliyan, R. MacDonald, A. Shaukat, B.C. Taylor, J.R. Johnson, T.J. Wilt.

    Drafting of the article: T.A. Shamliyan, R. MacDonald, A. Shaukat.

    Critical revision of the article for important intellectual content: T.A. Shamliyan, A. Shaukat, B.C. Taylor, J.-M. Yuan, J.R. Johnson, R.L. Kane, T.J. Wilt.

    Final approval of the article: T.A. Shamliyan, A. Shaukat, B.C. Taylor, J.-M. Yuan, J.R. Johnson, R.L. Kane, T.J. Wilt.

    Provision of study materials or patients: I. Rutks.

    Statistical expertise: R. MacDonald.

    Obtaining of funding: R.L. Kane, T.J. Wilt.

    Administrative, technical, or logistic support: R. MacDonald, J. Tacklind, I. Rutks, R.L. Kane, T.J. Wilt.

    Collection and assembly of data: T.A. Shamliyan, R. MacDonald, A. Shaukat, J. Tacklind, I. Rutks.

×
  • ‹ PREV ARTICLE
  • This Issue
  • NEXT ARTICLE ›
Jump To
  • Full Article
  • FULL ARTICLE
  • FULL ARTICLE
    • Abstract
    • Methods
    • Results
    • Discussion
      1. References
  • Figures
  • Tables
  • Supplements
  • Audio/Video
  • Summary for Patients
  • Clinical Slide Sets
  • CME / MOC
  • Comments
  • Twitter Link
  • Facebook Link
  • Email Link
More
  • LinkedIn Link

Abstract

Background:

Chronic hepatitis B infection can lead to liver failure, hepatocellular carcinoma, and death.

Purpose:

To evaluate the effectiveness of antiviral therapy for adults with chronic hepatitis B infection.

Data Sources:

Randomized, controlled trials (RCTs) of interferon (α2b and pegylated α2a), lamivudine, adefovir, entecavir, and telbivudine published from 1990 to 2008.

Study Selection:

Randomized, controlled clinical trials of adults with chronic hepatitis B published in English after 1989 that reported death; incidence of hepatocellular carcinoma or liver failure; prevalence and incidence of cirrhosis; presence or seroconversion of hepatitis B e antigen (HBeAg) or surface antigen (HBsAg), viral load of hepatitis B virus DNA; aspartate aminotransferase and alanine aminotransferase (ALT) levels; or fibrosis scores after therapy with interferon-α2b, pegylated interferon-α2a, lamivudine, adefovir, entecavir, and telbivudine.

Data Extraction:

Data extracted with standard protocols to calculate risk difference for clinical outcomes, viral load, HBeAg and HBsAg, ALT, histologic scores, and adverse events.

Data Synthesis:

In 16 RCTs (4431 patients), drug treatment did not improve clinical outcomes of chronic hepatitis B infection, but the trials were underpowered. In 60 RCTs that examined intermediate outcomes, no single treatment improved all intermediate outcomes. Low-quality evidence suggested HBsAg clearance after interferon-α2b (2 RCTs; 211 patients). Moderate-quality evidence suggested ALT normalization at follow-up after treatment with adefovir (2 RCTs; 600 patients) and HBeAg loss with lamivudine (2 RCTs; 318 patients). With interferon-α2b, moderate-quality evidence suggested HBeAg loss (3 RCTs; 351 patients), seroconversion (2 RCTs; 304 patients), and ALT normalization (2 RCTs; 131 patients). Pegylated interferon-α2a versus lamivudine improved HBeAg seroconversion (1 RCT; 814 patients) and ALT normalization (2 RCTs; 905 patients) off treatment. Pegylated interferon-α2a combined with lamivudine versus lamivudine improved HBeAg loss (1 RCT; 543 patients) and ALT normalization (2 RCTs; 905 patients). Adverse events during antiretroviral therapy occurred in more than 50% of patients but were not associated with increased treatment discontinuation. However, most studies excluded patients with hepatic or renal insufficiency or other serious comorbid conditions.

Limitation:

Marked heterogeneity in study samples, interventions, and measured outcomes preclude definitive conclusions.

Conclusion:

Evidence was insufficient to assess treatment effect on clinical outcomes or determine whether inconsistent improvements in selected intermediate measures are reliable surrogates. Future research is needed to provide evidence-based recommendations about optimal antiviral therapy in adults with chronic hepatitis B infection.

Hepatitis B is highly prevalent, with 350 million chronic cases worldwide (1). Despite immunization efforts, 4713 incident cases of hepatitis B were diagnosed in the United States in 2006 (2). An estimated 2000 to 4000 deaths per year in the United States are related to chronic hepatitis B liver diseases (3), including liver cirrhosis and hepatocellular carcinoma (4).
Because most patients are asymptomatic, treatment goals of antiviral therapy include long-term prevention of progression, development of cirrhosis and liver failure, and hepatocellular carcinoma. Short-term intermediate laboratory responses have been proposed as potential surrogate measures of treatment effects on clinical outcomes (1). Normalization of liver enzyme levels, viral suppression and clearance, reduction in histologic scores of liver inflammation or fibrosis, and combinations of these outcomes have been used to measure response to antiviral drugs or development of antiviral resistance (1, 5).
Seven antiviral agents are approved to treat hepatitis B in the United States, including oral medications (lamivudine, telbuvidine, adefovir, tenofovir, and entecavir) and injected interferons (standard interferon-α2b and pegylated interferon-α2a). Other agents are under investigation. The U.S. Food and Drug Administration approved tenofovir for adults in August 2008 on the basis of ongoing, unpublished trials that compared tenofovir with adefovir on intermediate outcomes, the results of which were not available for our review (6).
This review was commissioned as background material for the National Institutes of Health Consensus Development Conference on Management of Chronic Hepatitis B in Adults to synthesize the published evidence about the effectiveness of interferon therapy, oral therapy, and various combinations with defined or continuous courses of treatment. The full report, including a detailed description of our methods, is available at www.ahrq.gov/downloads/pub/evidence/pdf/hepb/hepb.pdf(7).

Methods

Data Sources and Study Selection

We searched MEDLINE, PubMed, the Cochrane Library (8), and other databases (9–11). We included randomized, controlled clinical trials (RCTs) of adults with chronic hepatitis B published in English after 1989 that reported death; incidence of hepatocellular carcinoma or liver failure; prevalence and incidence of cirrhosis; presence or seroconversion of hepatitis B e antigen (HBeAg) or surface antigen (HBsAg); viral load of hepatitis B virus (HBV) DNA; aspartate aminotransferase and alanine aminotransferase (ALT) levels; and histologic necroinflammatory or fibrosis scores after therapy with interferon-α2b, pegylated interferon-α2a, lamivudine, adefovir, entecavir, and telbivudine (12). Studies that enrolled at least 50 adults and provided treatment for 24 weeks or more were eligible for this review. Interferon studies of any size were eligible if participants were given treatment for at least 12 weeks. We excluded studies evaluating pregnant women, patients with hepatocellular carcinoma or HIV infection at baseline, patients undergoing chemotherapy or liver transplantation, or patients with several causes of hepatitis, unless outcomes for participants meeting our eligibility criteria were reported separately. The full report describes the search strategies (7). We included publications from the multinational HBV 99-01 Study Group assessing pegylated interferon-α2b, a treatment that has been intensively examined in patients with chronic hepatitis B but is not yet approved in the United States (13). Three investigators independently measured study eligibility (14).

Data Extraction and Quality Assessment

Three researchers independently evaluated the studies and extracted data to detect errors and discrepancies (14). We abstracted the number of events among treatment groups to calculate rates, relative risks (RRs), and absolute risk differences (15). We abstracted the number of patients randomly assigned to each treatment group as the denominator to calculate estimates, applying the intention-to-treat principle. We recorded intervals for outcome assessments in weeks from randomization for the active-treatment period and from the end of treatment for follow-up assessments. We prioritized clinical outcomes in the assessment of treatment benefits and harms. Sustained HBsAg loss or seroconversion was considered the criterion for resolution of hepatitis B viral infection and a major goal of antiviral therapy (1). Liver histologic outcomes included improved necroinflammatory and fibrosis scores. Sustained ALT normalization as diagnostic criteria of hepatocyte injury and sustained clearance of HBV DNA were assigned as secondary outcomes. Although positive associations with better clinical outcomes exist in observational studies, both outcomes may reverse after treatment. Because low levels of evidence from observational studies suggested that HBeAg-negative status was associated with worse clinical outcomes, we defined sustained HBeAg seroconversion as a desirable intermediate outcome.
We analyzed RCTs for participant selection, duration of and loss to follow-up, intention-to-treat principle, masking of treatment status, randomization scheme and its adequacy, allocation concealment, and justification of sample sizes (16). We assessed the level of evidence on the basis of the Grading of Recommendations Assessment, Development and Evaluation Working Group criteria (17, 18). We assigned a low level of evidence when data were from small RCTs or RCTs with flaws in design or analysis or were from post hoc subgroup analysis. We assigned a moderate level of evidence when a single, large multinational study or several small RCTs reported consistent associations between antiviral agents and outcomes and a high level of evidence when several high-quality studies in applicable patients reported consistent sustained effects at least 6 months after therapy.

Data Synthesis and Analysis

The full report includes evidence tables that summarize results of individual studies (7). We compared baseline data across the studies to test for differences in the target sample and to detect unusual patterns in the data (19–21). Analyses were conducted separately for clinical, biochemical, virologic, and histologic outcomes and for RRs and absolute risk differences. The protocol for meta-analyses was created according to recommendations (22, 23) to assess the consistency of the association between treatments and outcomes with random-effects models (24). Pooling criteria included the same operational definitions of outcomes and drug interventions (23). We used chi-square tests to assess heterogeneity (25, 26). Calculations used Stata statistical software, version 9.2 (StataCorp, College Station, Texas) (27). We assumed the presence of publication bias and did not use statistical tests for bias caused by sparse and heterogeneous data (14, 28–30).

Role of the Funding Source

The Agency for Healthcare Research and Quality suggested the initial questions and provided copyright release for this manuscript. The funding source had no role in the literature search, data analysis, conduct of the study, preparation of the review, or interpretation of the results. The funding source reviewed and approved the submitted manuscript without revisions.

Results

Ninety-three articles represented 60 unique RCTs (31–102). The full report contains the study flow diagram and the appendix with excluded studies (7). Studies enrolled 20 to 1367 patients who were predominately HBeAg-positive. Men constituted 78% of enrollees. Most enrollees were Asian (64%) or white (30%). The estimated duration of infection, reported in 8 studies, ranged from approximately 2 to 6 years. However, individual patient duration of infection ranged from 6 months to 20 years (31–40).

Clinical Outcomes

Studies that reported death, liver-related death, hepatocellular carcinoma, hepatic decompensation, or cirrhosis (Table) were not designed and did not have sufficient power to reliably assess drug effects on these clinical outcomes.

Table. Effects of Drug Therapies for Chronic Hepatitis B on Clinical Outcomes

Table. Effects of Drug Therapies for Chronic Hepatitis B on Clinical Outcomes
Death was assessed in 13 studies, with very few deaths reported (36, 39–50). Low-level evidence suggested that lamivudine (41), entecavir (43–47), interferon-α2b (36, 39, 48), pegylated interferon-α2a (49), pegylated interferon-α2b (50), and adefovir (42) did not decrease mortality.
Two studies assessed cirrhosis with small sample size and relatively short-term treatment with interferon-α2b. Reduction in cirrhosis incidence (40) or prevalence (51) was not observed. Few events occurred, and the studies were not sufficiently powered to detect differences in cirrhosis (52).
Three studies reported hepatic decompensation with very few events (44, 47, 53). There was no significant difference in hepatic decompensation after administration of lamivudine versus placebo (55) or entecavir versus lamivudine (44, 47). A multicenter study involving 651 Asian patients (58% were HBeAg-positive) with confirmed cirrhosis (61%) or advanced fibrosis (41) reported a decrease in “disease progression” (7.8% vs. 17.7% [hazard ratio, 0.45; P = 0.001]) for lamivudine versus placebo. Disease progression was the first occurrence of an increase of at least 2 points in the Child–Pugh score, hepatic decompensation, bleeding varices, renal insufficiency, bleeding gastric or esophageal varices, spontaneous bacterial peritonitis with proven sepsis, hepatocellular carcinoma, or death related to liver disease.
Four studies reported hepatocellular carcinoma. None demonstrated a statistically significant difference compared with no treatment after lamivudine (41), interferon-α2b (54), prolonged adefovir therapy (42), or interferon monotherapy with and without corticosteroids (51). Incidence of hepatocellular carcinoma did not differ between lamivudine and placebo in the multicenter study of patients with confirmed cirrhosis or advanced fibrosis mentioned earlier (41). The author's primary analysis that adjusted for country, sex, baseline ALT level, Child–Pugh score, and Ishak fibrosis score found a borderline significant effect (hazard ratio, 0.49 [95% CI, 0.25 to 0.99]) (41). Results were not statistically significant when the authors excluded patients who developed hepatocellular carcinoma within 1 year of enrollment.

Intermediate Outcomes

Effects of Drugs on Markers of Resolved Hepatitis B

Four RCTs examined the effects of interferon-α2b on HBsAg loss (essential diagnostic criteria of chronic hepatitis B) (1) combined with other markers of resolved hepatitis B, including loss of HBV DNA, HBeAg seroconversion, and normalization of ALT (54–57), and did not find a significant increase in rates of complete response (Appendix Table 1). Compared with placebo, drugs did not increase HBsAg clearance at the end of the treatments. Only 1 RCT of 169 HBeAg-positive patients found a significant increase in HBsAg loss at the end of 24 weeks of interferon-α2b therapy (38) and interferon-α2b with corticosteroid therapy. Two RCTs (38, 48) found that steroid pretreatment followed by interferon-α2b compared with no antiviral drugs significantly increased HBsAg loss by 11% at the end of the treatments.
Eight RCTs (34, 38, 44, 47, 54, 58–60) investigated combined virologic and biochemical outcomes, including HBV DNA loss, HBeAg clearance and seroconversion, and ALT normalization (Appendix Table 1) at the end of treatment, and 13 RCTs (33–35, 44, 46, 50, 51, 54–57, 59, 60) examined the same outcomes at follow-up off interferon treatments. Interferon-α2b increased sustained rates of undetectable HBV DNA and HBeAg (33, 35, 54, 55), negative HBV DNA and HBeAg combined with normal ALT (57), and rates of undetectable HBV DNA combined with normalization of ALT (34, 54). Interferon-α2b combined with lamivudine compared with lamivudine alone increased HBV DNA loss and HBeAg clearance and seroconversion in 75 treatment-naive patients (59).

Histologic Outcomes

Histologic outcomes (Appendix Table 1) included improvement in total, fibrosis, or necroinflammatory scores as proposed surrogates to assess preventive effects of treatments on development of cirrhosis in individual patients (61, 62).

Effects of Drugs on Histologic Outcomes at the End of Treatment

Adefovir for 48 to 96 weeks improved necroinflammatory and fibrosis scores compared with placebo with no dose–response association (Appendix Table 1) (63–65). Lamivudine administration for 48 to 96 weeks improved necroinflammatory scores in all RCTs (60, 66–68). Entecavir compared with lamivudine improved necroinflammatory scores but without a dose–response association (44–46).

Effects of Drugs on Histologic Outcomes at Follow-up After Treatment

Only 1 RCT (69) reported histologic improvement in necroinflammatory scores at 24-week follow-up after completion of a 48-week administration of pegylated interferon-α2a compared with lamivudine in 552 HBeAg-negative patients (69) (Appendix Table 1).

Viral (HBV DNA) Clearance

Viral (HBV DNA) clearance was associated with a favorable prognosis in observational longitudinal studies, although few data are available that are adjusted for baseline HBV DNA levels (1, 4) (Appendix Table 1). The studies used assays with different sensitivity to detect HBV DNA, including polymerase chain reaction assay (31, 33, 36, 44, 45, 47, 58, 60, 63, 70–77), reverse transcription polymerase chain reaction assay (43, 78), or solution hybridization assay (32, 37–39, 51, 59, 67, 68, 79–84).

Effects of Drugs on Viral Clearance at Follow-up After Treatment

Limited low to moderate evidence suggested that antiviral drugs and their combinations resulted in HBV DNA clearance at follow-up after therapy, ranging from 18 to 24 weeks. Interferon-α2b at 8- to 24-week follow-up increased HBV DNA loss compared with placebo or no antiviral therapy (33, 37); however, the effects were attenuated at longer follow-up (33, 37, 38). Limited, low-level evidence from 1 RCT suggested effects of lamivudine on HBV DNA loss at 24-week follow-up after 96 weeks of drug administration (60). One large RCT reported a significant benefit from adefovir administration in HBeAg-negative patients that was maintained at 18 weeks after treatment (64). Entecavir provided similar HBV DNA loss compared with lamivudine at 24-week follow-up (44) (Appendix Table 1).

Effects of Drugs on ALT Normalization at Follow-up Off Treatment

Alanine aminotransferase normalization at follow-up off treatment was greater after adefovir compared with placebo in HBeAg-negative (64) as well as -positive patients (74). Lamivudine compared with placebo increased rates of ALT at 24-week follow-up off treatment in 139 HBeAg-negative patients (60). Interferon-α2b at doses of 35 million units per week but not 7 million units per week compared with no antiviral treatment increased rates of ALT normalization at 8- to 24-week follow-up (33, 38). In contrast with the superior effectiveness of lamivudine at the end of the treatment, ALT normalization at 24- week follow-up after treatment was greater after pegylated interferon-α2a compared with lamivudine, and after combined therapy of pegylated interferon-α2a with lamivudine compared with lamivudine alone (49, 69).

Effects of Drugs on HBeAg Clearance or Seroconversion at Follow-up Off Treatment

A moderate amount of evidence demonstrated a significant sustained HBeAg clearance at follow-up off treatment for interferon-α2b (33, 40, 85). In patients receiving 52 weeks of lamivudine, HBeAg loss was greater at 16 weeks after therapy than in patients receiving placebo (68, 80). Interferon-α2b (40, 85) increased rates of HBeAg seroconversion versus placebo at 28- to 64-week follow-up. Pooled analysis of individual patient data from 4 RCTs found a significant increase in HBeAg seroconversion after combined therapy with interferon-α2b and lamivudine (85). Telbivudine compared with adefovir for 24 to 52 weeks increased HBeAg seroconversion in relative terms without significant differences in absolute rates (76). Pegylated interferon-α2a increased HBeAg seroconversion at 24-week follow-up compared with lamivudine (49). Pegylated interferon-α2a combined with lamivudine resulted in greater HBeAg seroconversion compared with lamivudine alone but not pegylated interferon-α2a alone (49). Combined treatments of pegylated interferon-α2b with lamivudine for 60 weeks increased HBeAg seroconversion compared with lamivudine alone (48). All other comparisons demonstrated random differences between compared drugs.
Relapse was reappearance of HBV DNA (31, 45, 47, 58, 73, 74, 82, 86–88) or increase in viral load and ALT levels (78) at the end of active treatments or at follow-up after therapies (34, 35, 38, 44, 50, 51, 54, 59, 83) (Appendix Table 1). Lamivudine administration for 60 weeks compared with 48 weeks increased rates of virologic relapse in 1 RCT of HBeAg-positive patients (88). Entecavir administration for 52 weeks resulted in lower rates of viral relapse at 24-week follow-up after treatment compared with lamivudine in HBeAg-positive, treatment-naive patients (44).

Drug-Specific Mutations

Drug-specific mutation (Appendix Table 1) was detected by the development of resistant HBV YMDD mutations (mutation in amino acid sequence tyrosine, methionine, aspartate, aspartate) at the end of lamivudine treatments (31, 41, 42, 49, 59, 63, 71, 73, 78, 80, 86–90) or at follow-up after the therapies (64, 79) (Appendix Table 1). Lamivudine administration increased the rates of YMDD mutation compared with placebo by 43% (41, 80). Longer treatments for 60 weeks versus 48 weeks resulted in larger rates of mixed and pure YMDD mutations (88). Adefovir versus placebo increased rates of emerging amino acid substitutions in the HBV-RT domain and rates of rt221Y amino acid substitution but not rt134D, rt219A, rt91I, rt134N, rt54H, and rt145M substitutions (63, 86). Longer treatments for 240 versus 114 weeks increased rates of adefovir-resistant mutations (42). However, combined therapy with adefovir plus lamivudine reduced the rates of YMDD compared with lamivudine monotherapy in patients with chronic hepatitis B and YMDD mutant HBV (71), with random differences in wild-type mutations. Interferon-α2b combined with lamivudine reduced rates of mutation compared with lamivudine alone, but with inconsistent effect sizes across 6 studies (31, 59, 73, 80, 87, 89). Pegylated interferon-α2a with lamivudine compared with pegylated interferon-α2a alone increased mutation in HBeAg-positive patients (49). The same study reported reduced rates of mutations with pegylated interferon-α2a or peginterferon-α2a combined with lamivudine than with lamivudine monotherapy (49). At follow-up after treatments, interferon-α2b alone or combined with lamivudine resulted in lower rates of mutations compared with lamivudine alone (79).
Baseline HBeAg status has been used for treatment decision making. However, the association between changes in HBeAg and clinical outcomes has not been tested in RCTs. Low-quality evidence indicates that treatment effects may vary by baseline HBeAg status.

Evidence From Trials That Combined Patients With HBeAg-Negative and -Positive Baseline Status

Lamivudine decreased disease progression (defined by hepatic decompensation, hepatocellular carcinoma, spontaneous bacterial peritonitis, bleeding gastroesophageal varices, or death related to liver disease) compared with placebo among patients who were HBeAg-positive at baseline but did not decrease disease progression among those who were HBeAg-negative (41). Telbivudine compared with lamivudine reduced the rates of detectable HBV DNA and improved necroinflammatory scores, with no worsening in the Knodell fibrosis score among HBeAg-positive patients, and random differences occurred in HBeAg-negative patients (77). Telbivudine compared with lamivudine in patients with compensated hepatitis B resulted in better outcomes in HBeAg-positive patients with no difference in a small subsample of HBeAg-negative patients (91). In contrast, only entecavir compared with lamivudine resulted in higher rates of undetectable HBV DNA and normal ALT levels among patients with an HBeAg-negative baseline status, and random differences occurred in HBeAg-positive patients (43).
Evidence from trials that included only HBeAg-negative patients (11 studies) suggested no effects on clinical outcomes or resolved hepatitis and inconsistent effects on intermediate measures. Adefovir improved biochemical, virologic, and histologic outcomes at the end of treatment and at follow-up after the treatment without development of genetic mutations (63, 64). Interferon-α2b combined with lamivudine was not more effective than lamivudine alone on combined (virologic with biochemical) (82) or virologic (73, 82, 89) outcomes but lowered the rates of reappearance of detectable serum HBV DNA (71) and genetic viral mutations (89). Pegylated interferon-α2a compared with lamivudine improved off-treatment biochemical and virologic outcomes and necroinflammatory scores but did not improve fibrosis scores (69). Pegylated interferon-α2a combined with lamivudine compared with lamivudine improved biochemical and virologic outcomes, with no differences in liver histology, after treatment (69).

Applicability of the Results to Patient Subsamples

The results from published RCTs can be generalized to adults with chronic hepatitis B without hepatic decompensation and serious confounding illnesses, predominately Asian or white men. Low-level evidence from RCTs suggested moderate differences in treatment effects among patient subsamples with different baseline characteristics (www.ahrq.gov/clinic/epcindex.htm). Younger patient age was associated with enhanced HBV DNA clearance and ALT normalization in patients treated with pegylated interferon versus lamivudine (92, 93). Disease progression or treatment induced sustained ALT normalization, and HBV DNA clearance did not vary by sex (41, 53, 83, 92, 93) or baseline body weight (92). Patients with longer duration of hepatitis responded to therapy 2.5 times less frequently than those with shorter duration of the disease. Sustained virologic response (HBeAg and HBV DNA loss) at 48 weeks off therapy with interferon-α2b combined with lamivudine compared with lamivudine monotherapy was greater in patients with an estimated duration of hepatitis of 10 years or less after adjustment for sex and age (31).
Treatment-induced follow-up histology, HBeAg or DNA clearance, and ALT normalization did not clearly vary by baseline histology severity (31, 58, 85, 94). However, individual RCTs reported that HBeAg loss was higher per 1-unit increase in baseline histologic activity index score (85). Lamivudine improved histology more than placebo among patients with moderate or severe hepatitis but failed in those with mild hepatitis (67). Virologic response to interferon-α2b plus lamivudine after treatment increased in those with a baseline inflammation score of 7 or more, independent of sex and age (31). Presence of steatosis did not modify the effect of pegylated interferon-α2a combined with lamivudine on posttreatment response (HBV DNA disappearance and ALT normalization) in both HBeAg-positive and -negative patients (94). Adjusted rates of posttreatment response were greater per 1-unit increase in baseline Knodell histologic activity index (94).
The effect of viral load on outcomes after therapy was difficult to interpret because of varying assays and cutoffs of baseline DNA. Inconsistent effects yielded no dose–response relationship. No studies reported subgroups with very low viral load. Combined administration of interferon-α2b with lamivudine resulted in greater HBV DNA clearance and HBeAg seroconversion after treatment in patients with baseline HBV DNA greater than 107 copies/mL (59). Pegylated interferon-α2a provided greater sustained response than did lamivudine in patients with baseline HBV DNA in the 25th to 75th percentile range (49, 92), with random differences at other percentiles. Treatment-induced ALT normalization and HBV DNA clearance or HBeAg seroconversion varied by HBV DNA genotype. Patients with genotypes B and C versus patients with genotype D had better responses at the end of treatments (92) and at follow-up after therapy (49, 90, 92, 93, 95–97). Patients with genotype A had lower adjusted odds of response than did patients with genotype C (92).

Baseline ALT Levels

Treatment-induced improvement in intermediate outcomes varied by baseline ALT levels, with inconsistent low-level evidence of a better response among patients with elevated baseline ALT levels (31, 49, 85, 94, 95). Hepatitis B virus DNA loss was more frequent among patients with elevated baseline ALT levels at follow-up after interferon-α2b administration with corticosteroid pretreatment than after interferon-α2b alone (95). Adjusted odds of sustained virologic response to interferon-α2b combined with lamivudine compared with lamivudine alone were higher in patients with baseline ALT levels of 150 U/L or more versus less than 150 U/L (RR, 3.12 [CI, 1.43 to 6.82]) (31). Sustained response to pegylated interferon-α2a combined with lamivudine compared with lamivudine alone was greater per 1-U/L increase in baseline ALT levels (RR, 10.32 [CI, 9.71 to 10.97]) (94). However, several studies reported no association between dose–response increase in baseline ALT levels and sustained response to pegylated interferon-α2a versus lamivudine (49) or pegylated interferon-α2b combined with lamivudine versus lamivudine (96).

Pretreatment Status

Seroconversion of HBeAg after pegylated interferon-α2a (alone or with lamivudine) was higher than that after lamivudine among lamivudine-naive patients (49), but not among previous lamivudine recipients. Five RCTs enrolled lamivudine-resistant patients (43, 46, 53, 72, 98). Among patients who did not respond to lamivudine, adefovir plus lamivudine versus lamivudine increased ALT normalization and HBV DNA clearance but not HBeAg clearance or seroconversion (72) without improving outcomes compared with adefovir monotherapy (72). Entecavir increased HBV DNA and HBeAg clearance and normalization of ALT in HBeAg-positive patients compared with lamivudine (43, 46) and improved necroinflammatory and fibrosis scores (46). Patients whose previous interferon therapy failed did not benefit from the addition of lamivudine (99).

Adverse Events

Investigators assessed adverse events to decide whether a change in dose or discontinuation of therapy was needed because of severity of events or laboratory abnormalities (Figure; Appendix Table 2). Duration of the assessed events and treatment utilization for adverse events was not reported. Variability of the reported adverse events and the definitions of severity and seriousness preclude pooling of harms. We could not detect obvious reasons for such variability because no validated questionnaire exists to assess adverse events after antiviral drugs. Studies did not report run-in periods of drug therapy to identify and exclude patients with adverse events before randomization. Almost all studies excluded patients with hepatic decompensation or renal insufficiency. Many studies excluded patients with serious comorbid conditions (31, 41, 49, 51, 53, 58, 65, 68–70, 72, 78, 80, 90, 100, 101) or nonviral chronic liver diseases (31, 41, 43, 44, 46, 59, 67, 68, 75, 79–81, 89, 98, 102). Randomization still resulted in valid comparisons of adverse events in the active treatment group versus control group, and absolute rates of adverse events compared with the odds of positive effects on various outcomes permit an estimate of the balance between benefits and harms in clinical settings (Figure).
Figure.

Absolute rates of the frequent (>40%) adverse effects after interferon therapy, by baseline HBeAg status.

HBeAg = hepatitis B e antigen.

Adverse events during antiviral therapy were reported for more than 50% of patients. Forty-four publications reported withdrawal from treatment and adverse effects categorized as “serious” by the investigators. No study assessed treatment adherence. Withdrawal rates and frequency and severity of adverse events after oral antiviral drugs were similar to those with placebo. The general exceptions included increases in ALT levels with adefovir and lamivudine and an added black-box warning that participants with or at risk for impaired renal function may develop nephrotoxicity with long-term administration of adefovir. Other reported adverse events were usually mild, including fatigue, headache, abdominal pain, nausea, and diarrhea. Entecavir was better tolerated than lamivudine (44, 46, 47).
Interferon-based therapies were not as well tolerated as oral drugs. Dose modifications, primarily because of neutropenia and thrombocytopenia, were required for nearly 50% of individuals receiving interferon-based therapies. An initial influenza-like illness was commonly associated with pegylated interferon-α2a treatment, noted by pyrexia, fatigue, myalgia, and headache. Withdrawal rates were 24% higher after interferon-α2b than with no treatment (54). Pegylated interferon-α2a combined with lamivudine resulted in greater discontinuation versus placebo or lamivudine alone (69). Patients had serious adverse events more often after combined therapy of lamivudine with interferon-α2b (89) or pegylated interferon-α2a (49) than after lamivudine alone.

Discussion

We restricted our review to publications in English, but conducted an additional MEDLINE search for RCTs of eligible antiviral drugs that were published in other languages. We reviewed the abstracts of 10 publications published in Chinese that examined adefovir (103), entecavir (104, 105), interferon-α2b or pegylated interferon-α2b (106, 107), and lamivudine (108–112). We concluded that language bias, if present, would not change our overall conclusions about the efficacy of the evaluated antiviral drugs in adults with chronic hepatitis B.
We did not evaluate antiviral drugs that have not been approved by the U.S. Food and Drug Administration for chronic hepatitis B, including emtricitabine, clevudine, pradefovir, valtorcitabine, and thymosin-α1 (113). These drugs did not prevent liver cancer or decompensation but resulted in viral loss and normalization of ALT levels (114–117), HBeAg seroconversion and improved histology (118), antiviral mutations, and immunologic biomarkers (119) in patients with chronic hepatitis B or coinfection with HIV (120, 121).
Data available from RCTs are insufficient to provide patients, clinicians, researchers, and policymakers with high-quality information needed for decision making about the long-term effects of chronic hepatitis B treatments on clinical outcomes. None of the RCTs demonstrated an effect on death, hepatocellular carcinoma, liver decompensation, cirrhosis, or resolved hepatitis. However, none were of sufficient size or duration or were designed to assess clinical outcomes. Individual studies reported very few events and compared different drugs and patients, generally precluding pooling. Therefore, we cannot exclude the possibility that antiviral agents might improve clinical outcomes.
A single study found a significant reduction in hepatocellular carcinoma due to lamivudine in 651 adults (98% were Asian; 85% were men) with baseline cirrhosis or fibrosis after adjustment for baseline variables (hazard ratio, 0.49 [CI, 0.25 to 0.99]; absolute risk reduction, 4%). The results were not significant after exclusion of patients who developed hepatocellular carcinoma within 1 year of randomization, and the risk for death increased, although not significantly (RR, 2.47 [CI, 0.12 to 51.25]) (41). Disease progression, defined by a 2-point increase in Child–Pugh score comprised nearly half of the events. The Child–Pugh score assesses severity of liver disease on the basis of components that include biochemical measures (serum bilirubin and albumin levels and prothrombin) in addition to clinical measurements (ascites, encephalopathy, and sepsis).
For most outcomes, most conclusions about changes in intermediate outcomes were based on low levels of evidence from a single study or inconsistent results from several studies; therefore, our confidence in the effect size estimate is generally low. The role of intermediate markers or their combinations as surrogates for effects of treatment on clinical outcomes in chronic hepatitis B has never been adequately tested. Trial authors did not justify selection of intermediate markers by the clinical or prognostic importance of the expected changes. Anticipated odds of improved intermediate outcomes should be compared with odds of adverse effects.
Consensus among investigators and regulatory agencies is needed about whether currently used intermediate markers are true surrogates for treatment effects on mortality, morbidity, and quality of life in adults with chronic hepatitis B. Standardization of the measurements of viral load and hepatic aminotransferase in relation to patient age, race, and sex, and a uniform scoring system for liver biopsies with a single definition of what constitutes a clinically meaningful change in score, are essential for synthesis of the results from different studies. Future clinical trials should assess sustained benefits for 6 or more months after the active treatments.

References

  1. Lok
    AS
    ,  
    McMahon
    BJ
    .  
    Chronic hepatitis B.
    Hepatology
    2007
    45
    507
    39
     PubMed
    CrossRef
     PubMed
  2. National Center for Health Statistics. Health, United States, 2006, with Chartbook on Trends in the Health of Americans. National Center for Health Statistics. Hyattsville, MD: National Center for Health Statistics; 2006. DHHS publication no. 20402.
  3. Miniño
    AM
    ,  
    Heron
    MP
    ,  
    Murphy
    SL
    ,  
    Kochanek
    KD
    .  
    Centers for Disease Control and Prevention National Center for Health Statistics National Vital Statistics System
    Deaths: final data for 2004.
    Natl Vital Stat Rep
    2007
    55
    1
    119
     PubMed
     PubMed
  4. Pungpapong
    S
    ,  
    Kim
    WR
    ,  
    Poterucha
    JJ
    .  
    Natural history of hepatitis B virus infection: an update for clinicians.
    Mayo Clin Proc
    2007
    82
    967
    75
     PubMed
    CrossRef
     PubMed
  5. Hoofnagle
    JH
    ,  
    Doo
    E
    ,  
    Liang
    TJ
    ,  
    Fleischer
    R
    ,  
    Lok
    AS
    .  
    Management of hepatitis B: summary of a clinical research workshop.
    Hepatology
    2007
    45
    1056
    75
     PubMed
    CrossRef
     PubMed
  6. Birnkrant D. Approval letter for Viread (tenofovir disoproxil fumarate) Tablets. Letter to Gilead Sciences, Inc., from Debra Birnkrant, MD, Director of the Division of Antiviral Products, Office of Antimicrobial Products, Center for Drug Evaluation and Research. NDA 21-356/S-025. 11 August 2008. Accessed at www.fda.gov/cder/foi/appletter/2008/021356s025ltr.pdf on 19 November 2008.
  7. Wilt TJ, Shamliyan T, Shaukat A, Taylor BC, MacDonald R, Yuan J-M, et al. Management of Chronic Hepatitis B. Evidence Report/Technology Assessment No. 174. (Prepared by the Minnesota Evidence-based Practice Center under contract no. 290-02-0009.) Rockville, MD: Agency for Healthcare Research and Quality; 2008. AHRQ publication no. 09-E002.
  8. The Cochrane Library. Chichester, UK: J Wiley; 2008. Accessed at www.cochrane.org on 25 November 2008.
  9. U.S. Food and Drug Administration
    MedWatch
    MedWatch online voluntary reporting form (3500)
    Rockville, MD
    U.S. Food and Drug Administration, MedWatch
    2002
  10. Great Britain Committee on Safety of Medicines. Great Britain Medicines Control Agency, Great Britain Medicines and Healthcare products Regulatory Agency. Current Problems in Pharmacovigilance. Accessed at www.mhra.gov.uk/Publications/Safetyguidance/CurrentProblemsinPharmacovigilance/index.htm on 25 November 2008.
  11. European Agency for the Evaluation of Medicinal Products
    European Public Assessment Reports (EPARs).
    London
    European Agency for the Evaluation of Medicinal Products
    2837
  12. U.S. Food and Drug Administration (FDA). Center for Drug Evaluation and Research (CDER). Accessed at www.fda.gov/cder/ on 19 November 2008.
  13. ClinicalTrials.gov Information about Federally and Privately Supported Clinical Research in Human Volunteers. Bethesda, MD: U.S. National Library of Medicine; 2002.
  14. Higgins
    J
    ,  
    Green
    S
    .  
    The Cochrane Collaboration
    The Cochrane handbook for systematic reviews of interventions.
    2006
    Chichester, UK
    J Wiley
    2005
  15. Dawson
    B
    ,  
    Trapp
    RG
    .  
    Basic & Clinical Biostatistics (LANGE Basic Science). 3rd ed.
    New York
    McGraw-Hill
    2004
  16. West
    S
    ,  
    King
    V
    ,  
    Carey
    TS
    ,  
    Lohr
    KN
    ,  
    McKoy
    N
    ,  
    Sutton
    SF
    ,  
    et al
    Systems to rate the strength of scientific evidence.
    Evid Rep Technol Assess (Summ)
    2002
    1
    11
     PubMed
  17. Atkins
    D
    ,  
    Briss
    PA
    ,  
    Eccles
    M
    ,  
    Flottorp
    S
    ,  
    Guyatt
    GH
    ,  
    Harbour
    RT
    ,  
    et al
    GRADE Working Group
    Systems for grading the quality of evidence and the strength of recommendations II: pilot study of a new system.
    BMC Health Serv Res
    2005
    5
    25
     PubMed
    CrossRef
     PubMed
  18. Atkins
    D
    ,  
    Eccles
    M
    ,  
    Flottorp
    S
    ,  
    Guyatt
    GH
    ,  
    Henry
    D
    ,  
    Hill
    S
    ,  
    et al
    GRADE Working Group
    Systems for grading the quality of evidence and the strength of recommendations I: critical appraisal of existing approaches The GRADE Working Group.
    BMC Health Serv Res
    2004
    4
    38
     PubMed
    CrossRef
     PubMed
  19. Al-Marzouki
    S
    ,  
    Evans
    S
    ,  
    Marshall
    T
    ,  
    Roberts
    I
    .  
    Are these data real? Statistical methods for the detection of data fabrication in clinical trials.
    BMJ
    2005
    331
    267
    70
     PubMed
    CrossRef
     PubMed
  20. Buyse
    M
    ,  
    George
    SL
    ,  
    Evans
    S
    ,  
    Geller
    NL
    ,  
    Ranstam
    J
    ,  
    Scherrer
    B
    ,  
    et al
    The role of biostatistics in the prevention, detection and treatment of fraud in clinical trials.
    Stat Med
    1999
    18
    3435
    51
     PubMed
    CrossRef
     PubMed
  21. Kahn
    HA
    ,  
    Sempos
    CT
    .  
    Statistical Methods in Epidemiology (Monographs in Epidemiology and Biostatistics).
    New York
    Oxford Univ Pr
    1989
  22. Moher
    D
    ,  
    Cook
    DJ
    ,  
    Eastwood
    S
    ,  
    Olkin
    I
    ,  
    Rennie
    D
    ,  
    Stroup
    DF
    .  
    Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Quality of Reporting of Meta-analyses.
    Lancet
    1999
    354
    1896
    900
     PubMed
    CrossRef
     PubMed
  23. Whitehead
    A
    .  
    Meta-analysis of controlled clinical trials.
    Chichester, UK
    J Wiley
    2002
  24. DerSimonian
    R
    ,  
    Laird
    N
    .  
    Meta-analysis in clinical trials.
    Control Clin Trials
    1986
    7
    177
    88
     PubMed
    CrossRef
     PubMed
  25. Viechtbauer
    W
    .  
    Confidence intervals for the amount of heterogeneity in meta-analysis.
    Stat Med
    2007
    26
    37
    52
     PubMed
    CrossRef
     PubMed
  26. Knapp
    G
    ,  
    Biggerstaff
    BJ
    ,  
    Hartung
    J
    .  
    Assessing the amount of heterogeneity in random-effects meta-analysis.
    Biom J
    2006
    48
    271
    85
     PubMed
    CrossRef
     PubMed
  27. Egger
    M
    ,  
    Smith
    GD
    ,  
    Altman
    DG
    .  
    Systematic Reviews in Health Care
    London
    BMJ Books
    2001
  28. Egger
    M
    ,  
    Smith
    GD
    .  
    Bias in location and selection of studies.
    BMJ
    1998
    316
    61
    6
     PubMed
    CrossRef
     PubMed
  29. Dickersin K, Min YI. NIH clinical trials and publication bias. Online J Curr Clin Trials. 1993;Doc No 50:[4967 words; 53 paragraphs]. [PMID: 8306005]
  30. Thornton
    A
    ,  
    Lee
    P
    .  
    Publication bias in meta-analysis: its causes and consequences.
    J Clin Epidemiol
    2000
    53
    207
    16
     PubMed
    CrossRef
     PubMed
  31. Barbaro
    G
    ,  
    Zechini
    F
    ,  
    Pellicelli
    AM
    ,  
    Francavilla
    R
    ,  
    Scotto
    G
    ,  
    Bacca
    D
    ,  
    et al
    Lamivudine Italian Study Group Investigators
    Long-term efficacy of interferon alpha-2b and lamivudine in combination compared to lamivudine monotherapy in patients with chronic hepatitis B. An Italian multicenter, randomized trial.
    J Hepatol
    2001
    35
    406
    11
     PubMed
    CrossRef
     PubMed
  32. Chung
    YH
    ,  
    Song
    BC
    ,  
    Lee
    GC
    ,  
    Shin
    JW
    ,  
    Ryu
    SH
    ,  
    Jung
    SA
    ,  
    et al
    Individualization of interferon therapy using serum hepatitis B virus DNA to reduce viral relapse in patients with chronic hepatitis B: a randomized, controlled trial.
    Eur J Gastroenterol Hepatol
    2003
    15
    489
    93
     PubMed
     PubMed
  33. Di Bisceglie
    AM
    ,  
    Fong
    TL
    ,  
    Fried
    MW
    ,  
    Swain
    MG
    ,  
    Baker
    B
    ,  
    Korenman
    J
    ,  
    et al
    A randomized, controlled trial of recombinant alpha-interferon therapy for chronic hepatitis B.
    Am J Gastroenterol
    1993
    88
    1887
    92
     PubMed
     PubMed
  34. Hadziyannis
    S
    ,  
    Bramou
    T
    ,  
    Makris
    A
    ,  
    Moussoulis
    G
    ,  
    Zignego
    L
    ,  
    Papaioannou
    C
    .  
    Interferon alfa-2b treatment of HBeAg negative/serum HBV DNA positive chronic active hepatitis type B.
    J Hepatol
    1990
    11
    S133
    6
     PubMed
    CrossRef
     PubMed
  35. Janssen
    HL
    ,  
    Gerken
    G
    ,  
    Carreño
    V
    ,  
    Marcellin
    P
    ,  
    Naoumov
    NV
    ,  
    Craxi
    A
    ,  
    et al
    Interferon alfa for chronic hepatitis B infection: increased efficacy of prolonged treatment. The European Concerted Action on Viral Hepatitis (EUROHEP).
    Hepatology
    1999
    30
    238
    43
     PubMed
    CrossRef
     PubMed
  36. Lopez-Alcorocho
    JM
    ,  
    Bartolome
    J
    ,  
    Cotonat
    T
    ,  
    Carreño
    V
    .  
    Efficacy of prolonged interferon-alpha treatment in chronic hepatitis B patients with HBeAb: comparison between 6 and 12 months of therapy.
    J Viral Hepat
    1997
    4
    27
    32
     PubMed
    CrossRef
     PubMed
  37. Niederau
    C
    ,  
    Heintges
    T
    ,  
    Niederau
    M
    ,  
    Stremmel
    W
    ,  
    Strohmeyer
    G
    .  
    Prospective randomized, controlled trial of sequential treatment with corticoids and alpha-interferon versus treatment with interferon alone in patients with chronic active hepatitis B.
    Eur J Med
    1992
    1
    396
    402
     PubMed
     PubMed
  38. Perrillo
    RP
    ,  
    Schiff
    ER
    ,  
    Davis
    GL
    ,  
    Bodenheimer
    HC
    Jr
    ,  
    Lindsay
    K
    ,  
    Payne
    J
    ,  
    et al
    A randomized, controlled trial of interferon alfa-2b alone and after prednisone withdrawal for the treatment of chronic hepatitis B. The Hepatitis Interventional Therapy Group.
    N Engl J Med
    1990
    323
    295
    301
     PubMed
    CrossRef
     PubMed
  39. Reichen
    J
    ,  
    Bianchi
    L
    ,  
    Frei
    PC
    ,  
    Malé
    PJ
    ,  
    Lavanchy
    D
    ,  
    Schmid
    M
    .  
    Efficacy of steroid withdrawal and low-dose interferon treatment in chronic active hepatitis B. Results of a randomized multicenter trial. Swiss Association for the Study of the Liver.
    J Hepatol
    1994
    20
    168
    74
     PubMed
    CrossRef
     PubMed
  40. Waked
    I
    ,  
    Amin
    M
    ,  
    Abd el Fattah
    S
    ,  
    Osman
    LM
    ,  
    Sabbour
    MS
    .  
    Experience with interferon in chronic hepatitis B in Egypt.
    J Chemother
    1990
    2
    310
    8
     PubMed
    CrossRef
     PubMed
  41. Liaw
    YF
    ,  
    Sung
    JJ
    ,  
    Chow
    WC
    ,  
    Farrell
    G
    ,  
    Lee
    CZ
    ,  
    Yuen
    H
    ,  
    et al
    Cirrhosis Asian Lamivudine Multicentre Study Group
    Lamivudine for patients with chronic hepatitis B and advanced liver disease.
    N Engl J Med
    2004
    351
    1521
    31
     PubMed
    CrossRef
     PubMed
  42. Hadziyannis
    SJ
    ,  
    Tassopoulos
    NC
    ,  
    Heathcote
    EJ
    ,  
    Chang
    TT
    ,  
    Kitis
    G
    ,  
    Rizzetto
    M
    ,  
    et al
    Adefovir Dipivoxil 438 Study Group
    Long-term therapy with adefovir dipivoxil for HBeAg-negative chronic hepatitis B for up to 5 years.
    Gastroenterology
    2006
    131
    1743
    51
     PubMed
    CrossRef
     PubMed
  43. Chang
    TT
    ,  
    Gish
    RG
    ,  
    Hadziyannis
    SJ
    ,  
    Cianciara
    J
    ,  
    Rizzetto
    M
    ,  
    Schiff
    ER
    ,  
    et al
    BEHoLD Study Group
    A dose-ranging study of the efficacy and tolerability of entecavir in Lamivudine-refractory chronic hepatitis B patients.
    Gastroenterology
    2005
    129
    1198
    209
     PubMed
    CrossRef
     PubMed
  44. Chang
    TT
    ,  
    Gish
    RG
    ,  
    de Man
    R
    ,  
    Gadano
    A
    ,  
    Sollano
    J
    ,  
    Chao
    YC
    ,  
    et al
    BEHoLD AI463022 Study Group
    A comparison of entecavir and lamivudine for HBeAg-positive chronic hepatitis B.
    N Engl J Med
    2006
    354
    1001
    10
     PubMed
    CrossRef
     PubMed
  45. Lai
    CL
    ,  
    Shouval
    D
    ,  
    Lok
    AS
    ,  
    Chang
    TT
    ,  
    Cheinquer
    H
    ,  
    Goodman
    Z
    ,  
    et al
    BEHoLD AI463027 Study Group
    Entecavir versus lamivudine for patients with HBeAg-negative chronic hepatitis B.
    N Engl J Med
    2006
    354
    1011
    20
     PubMed
    CrossRef
     PubMed
  46. Sherman
    M
    ,  
    Yurdaydin
    C
    ,  
    Sollano
    J
    ,  
    Silva
    M
    ,  
    Liaw
    YF
    ,  
    Cianciara
    J
    ,  
    et al
    AI463026 BEHoLD Study Group
    Entecavir for treatment of lamivudine-refractory, HBeAg-positive chronic hepatitis B.
    Gastroenterology
    2006
    130
    2039
    49
     PubMed
    CrossRef
     PubMed
  47. Gish
    RG
    ,  
    Lok
    AS
    ,  
    Chang
    TT
    ,  
    de Man
    RA
    ,  
    Gadano
    A
    ,  
    Sollano
    J
    ,  
    et al
    Entecavir therapy for up to 96 weeks in patients with HBeAg-positive chronic hepatitis B.
    Gastroenterology
    2007
    133
    1437
    44
     PubMed
    CrossRef
     PubMed
  48. Robson
    SC
    ,  
    Brice
    E
    ,  
    van Rensburg
    C
    ,  
    Kannemeyer
    J
    ,  
    Hift
    RJ
    ,  
    Kirsch
    RE
    .  
    Safety and efficacy of interferon alpha-2b following prednisone withdrawal in the treatment of chronic viral hepatitis B. A case–controlled, randomised study.
    S Afr Med J
    1992
    82
    317
    20
     PubMed
     PubMed
  49. Peginterferon Alfa-2a HBeAg-Positive Chronic Hepatitis B Study Group
    Peginterferon Alfa-2a, lamivudine, and the combination for HBeAg-positive chronic hepatitis B.
    N Engl J Med
    2005
    352
    2682
    95
     PubMed
    CrossRef
     PubMed
  50. Chan
    HL
    ,  
    Hui
    AY
    ,  
    Wong
    VW
    ,  
    Chim
    AM
    ,  
    Wong
    ML
    ,  
    Sung
    JJ
    .  
    Long-term follow-up of peginterferon and lamivudine combination treatment in HBeAg-positive chronic hepatitis B.
    Hepatology
    2005
    41
    1357
    64
     PubMed
    CrossRef
     PubMed
  51. Zarski
    JP
    ,  
    Causse
    X
    ,  
    Cohard
    M
    ,  
    Cougnard
    J
    ,  
    Trepo
    C
    .  
    A randomized, controlled trial of interferon alfa-2b alone and with simultaneous prednisone for the treatment of chronic hepatitis B. French Multicenter Group.
    J Hepatol
    1994
    20
    735
    41
     PubMed
    CrossRef
     PubMed
  52. Wong
    JB
    ,  
    Koff
    RS
    ,  
    Tinè
    F
    ,  
    Pauker
    SG
    .  
    Cost-effectiveness of interferon-alpha 2b treatment for hepatitis B e antigen-positive chronic hepatitis B.
    Ann Intern Med
    2837
    122
    664
    75
    CrossRef
  53. Kim
    YJ
    ,  
    Kim
    BG
    ,  
    Jung
    JO
    ,  
    Yoon
    JH
    ,  
    Lee
    HS
    .  
    High rates of progressive hepatic functional deterioration whether lamivudine therapy is continued or discontinued after emergence of a lamivudine-resistant mutant: a prospective randomized, controlled study.
    J Gastroenterol
    2006
    41
    240
    9
     PubMed
    CrossRef
     PubMed
  54. Lampertico
    P
    ,  
    Del Ninno
    E
    ,  
    Manzin
    A
    ,  
    Donato
    MF
    ,  
    Rumi
    MG
    ,  
    Lunghi
    G
    ,  
    et al
    A randomized, controlled trial of a 24-month course of interferon alfa 2b in patients with chronic hepatitis B who had hepatitis B virus DNA without hepatitis B e antigen in serum.
    Hepatology
    1997
    26
    1621
    5
     PubMed
    CrossRef
     PubMed
  55. Lok
    AS
    ,  
    Wu
    PC
    ,  
    Lai
    CL
    ,  
    Lau
    JY
    ,  
    Leung
    EK
    ,  
    Wong
    LS
    ,  
    et al
    A controlled trial of interferon with or without prednisone priming for chronic hepatitis B.
    Gastroenterology
    1992
    102
    2091
    7
     PubMed
    CrossRef
     PubMed
  56. Müller
    R
    ,  
    Baumgarten
    R
    ,  
    Markus
    R
    ,  
    Schulz
    M
    ,  
    Wittenberg
    H
    ,  
    Hintsche-Kilger
    B
    ,  
    et al
    Low dose alpha interferon treatment in chronic hepatitis B virus infection.
    Gut
    1993
    34
    S97
    8
     PubMed
    CrossRef
     PubMed
  57. Müller
    R
    ,  
    Baumgarten
    R
    ,  
    Markus
    R
    ,  
    Schulz
    M
    ,  
    Wittenberg
    H
    ,  
    Hintsche-Kilger
    B
    ,  
    et al
    Treatment of chronic hepatitis B with interferon alfa-2b.
    J Hepatol
    1990
    11
    S137
    40
     PubMed
    CrossRef
     PubMed
  58. Lai
    CL
    ,  
    Leung
    N
    ,  
    Teo
    EK
    ,  
    Tong
    M
    ,  
    Wong
    F
    ,  
    Hann
    HW
    ,  
    et al
    Telbivudine Phase II Investigator Group
    A 1-year trial of telbivudine, lamivudine, and the combination in patients with hepatitis B e antigen-positive chronic hepatitis B.
    Gastroenterology
    2005
    129
    528
    36
     PubMed
    CrossRef
     PubMed
  59. Sarin
    SK
    ,  
    Kumar
    M
    ,  
    Kumar
    R
    ,  
    Kazim
    SN
    ,  
    Guptan
    RC
    ,  
    Sakhuja
    P
    ,  
    et al
    Higher efficacy of sequential therapy with interferon-alpha and lamivudine combination compared to lamivudine monotherapy in HBeAg positive chronic hepatitis B patients.
    Am J Gastroenterol
    2005
    100
    2463
    71
     PubMed
    CrossRef
     PubMed
  60. Chan
    HL
    ,  
    Wang
    H
    ,  
    Niu
    J
    ,  
    Chim
    AM
    ,  
    Sung
    JJ
    .  
    Two-year lamivudine treatment for hepatitis B e antigen-negative chronic hepatitis B: a double-blind, placebo-controlled trial.
    Antivir Ther
    2007
    12
    345
    53
     PubMed
     PubMed
  61. Poynard
    T
    ,  
    Zoulim
    F
    ,  
    Ratziu
    V
    ,  
    Degos
    F
    ,  
    Imbert-Bismut
    F
    ,  
    Deny
    P
    ,  
    et al
    Longitudinal assessment of histology surrogate markers (FibroTest-ActiTest) during lamivudine therapy in patients with chronic hepatitis B infection.
    Am J Gastroenterol
    2005
    100
    1970
    80
     PubMed
    CrossRef
     PubMed
  62. Hui
    CK
    ,  
    Leung
    N
    ,  
    Shek
    WH
    ,  
    Zhang
    HY
    ,  
    Luk
    JM
    ,  
    Poon
    RT
    ,  
    et al
    Hong Kong Liver Fibrosis Study Group
    Changes in liver histology as a “surrogate” end point of antiviral therapy for chronic HBV can predict progression to liver complications.
    J Clin Gastroenterol
    2008
    42
    533
    8
     PubMed
    CrossRef
     PubMed
  63. Hadziyannis
    SJ
    ,  
    Tassopoulos
    NC
    ,  
    Heathcote
    EJ
    ,  
    Chang
    TT
    ,  
    Kitis
    G
    ,  
    Rizzetto
    M
    ,  
    et al
    Adefovir Dipivoxil 438 Study Group
    Adefovir dipivoxil for the treatment of hepatitis B e antigen-negative chronic hepatitis B.
    N Engl J Med
    2003
    348
    800
    7
     PubMed
    CrossRef
     PubMed
  64. Hadziyannis
    SJ
    ,  
    Tassopoulos
    NC
    ,  
    Heathcote
    EJ
    ,  
    Chang
    TT
    ,  
    Kitis
    G
    ,  
    Rizzetto
    M
    ,  
    et al
    Adefovir Dipivoxil 438 Study Group
    Long-term therapy with adefovir dipivoxil for HBeAg-negative chronic hepatitis B.
    N Engl J Med
    2005
    352
    2673
    81
     PubMed
    CrossRef
     PubMed
  65. Marcellin
    P
    ,  
    Chang
    TT
    ,  
    Lim
    SG
    ,  
    Tong
    MJ
    ,  
    Sievert
    W
    ,  
    Shiffman
    ML
    ,  
    et al
    Adefovir Dipivoxil 437 Study Group
    Adefovir dipivoxil for the treatment of hepatitis B e antigen-positive chronic hepatitis B.
    N Engl J Med
    2003
    348
    808
    16
     PubMed
    CrossRef
     PubMed
  66. Yuen
    MF
    ,  
    Chow
    DH
    ,  
    Tsui
    K
    ,  
    Wong
    BC
    ,  
    Yuen
    JC
    ,  
    Wong
    DK
    ,  
    et al
    Liver histology of Asian patients with chronic hepatitis B on prolonged lamivudine therapy.
    Aliment Pharmacol Ther
    2005
    21
    841
    9
     PubMed
    CrossRef
     PubMed
  67. Lai
    CL
    ,  
    Chien
    RN
    ,  
    Leung
    NW
    ,  
    Chang
    TT
    ,  
    Guan
    R
    ,  
    Tai
    DI
    ,  
    et al
    A one-year trial of lamivudine for chronic hepatitis B. Asia Hepatitis Lamivudine Study Group.
    N Engl J Med
    1998
    339
    61
    8
     PubMed
    CrossRef
     PubMed
  68. Dienstag
    JL
    ,  
    Schiff
    ER
    ,  
    Wright
    TL
    ,  
    Perrillo
    RP
    ,  
    Hann
    HW
    ,  
    Goodman
    Z
    ,  
    et al
    Lamivudine as initial treatment for chronic hepatitis B in the United States.
    N Engl J Med
    1999
    341
    1256
    63
     PubMed
    CrossRef
     PubMed
  69. Peginterferon Alfa-2a HBeAg-Negative Chronic Hepatitis B Study Group
    Peginterferon alfa-2a alone, lamivudine alone, and the two in combination in patients with HBeAg-negative chronic hepatitis B.
    N Engl J Med
    2004
    351
    1206
    17
     PubMed
    CrossRef
     PubMed
  70. Lai
    CL
    ,  
    Rosmawati
    M
    ,  
    Lao
    J
    ,  
    Van Vlierberghe
    H
    ,  
    Anderson
    FH
    ,  
    Thomas
    N
    ,  
    et al
    Entecavir is superior to lamivudine in reducing hepatitis B virus DNA in patients with chronic hepatitis B infection.
    Gastroenterology
    2002
    123
    1831
    8
     PubMed
    CrossRef
     PubMed
  71. Perrillo
    R
    ,  
    Hann
    HW
    ,  
    Mutimer
    D
    ,  
    Willems
    B
    ,  
    Leung
    N
    ,  
    Lee
    WM
    ,  
    et al
    Adefovir dipivoxil added to ongoing lamivudine in chronic hepatitis B with YMDD mutant hepatitis B virus.
    Gastroenterology
    2004
    126
    81
    90
     PubMed
    CrossRef
     PubMed
  72. Peters
    MG
    ,  
    Hann
    HW
    ,  
    Martin
    P
    ,  
    Heathcote
    EJ
    ,  
    Buggisch
    P
    ,  
    Rubin
    R
    ,  
    et al
    Adefovir dipivoxil alone or in combination with lamivudine in patients with lamivudine-resistant chronic hepatitis B.
    Gastroenterology
    2004
    126
    91
    101
     PubMed
    CrossRef
     PubMed
  73. Economou
    M
    ,  
    Manolakopoulos
    S
    ,  
    Trikalinos
    TA
    ,  
    Filis
    S
    ,  
    Bethanis
    S
    ,  
    Tzourmakliotis
    D
    ,  
    et al
    Interferon-alpha plus lamivudine vs lamivudine reduces breakthroughs, but does not affect sustained response in HBeAg negative chronic hepatitis B.
    World J Gastroenterol
    2005
    11
    5882
    7
     PubMed
    CrossRef
     PubMed
  74. Zeng
    M
    ,  
    Mao
    Y
    ,  
    Yao
    G
    ,  
    Wang
    H
    ,  
    Hou
    J
    ,  
    Wang
    Y
    ,  
    et al
    A double-blind randomized trial of adefovir dipivoxil in Chinese subjects with HBeAg-positive chronic hepatitis B.
    Hepatology
    2006
    44
    108
    16
     PubMed
    CrossRef
     PubMed
  75. Ke
    CZ
    ,  
    Chen
    Y
    ,  
    Gong
    ZJ
    ,  
    Meng
    ZJ
    ,  
    Liu
    L
    ,  
    Ren
    ZJ
    ,  
    et al
    Dynamic changes of HBV DNA in serum and peripheral blood mononuclear cells of chronic hepatitis patients after lamivudine treatment.
    World J Gastroenterol
    2006
    12
    4061
    3
     PubMed
    CrossRef
     PubMed
  76. Chan
    HL
    ,  
    Heathcote
    EJ
    ,  
    Marcellin
    P
    ,  
    Lai
    CL
    ,  
    Cho
    M
    ,  
    Moon
    YM
    ,  
    et al
    018 Study Group
    Treatment of hepatitis B e antigen positive chronic hepatitis with telbivudine or adefovir: a randomized trial.
    Ann Intern Med
    2007
    147
    745
    54
    CrossRef
     PubMed
  77. Lai
    CL
    ,  
    Gane
    E
    ,  
    Liaw
    YF
    ,  
    Hsu
    CW
    ,  
    Thongsawat
    S
    ,  
    Wang
    Y
    ,  
    et al
    Globe Study Group
    Telbivudine versus lamivudine in patients with chronic hepatitis B.
    N Engl J Med
    2007
    357
    2576
    88
     PubMed
    CrossRef
     PubMed
  78. Chan
    HL
    ,  
    Leung
    NW
    ,  
    Hui
    AY
    ,  
    Wong
    VW
    ,  
    Liew
    CT
    ,  
    Chim
    AM
    ,  
    et al
    A randomized, controlled trial of combination therapy for chronic hepatitis B: comparing pegylated interferon-alpha2b and lamivudine with lamivudine alone.
    Ann Intern Med
    2005
    142
    240
    50
    CrossRef
     PubMed
  79. Schalm
    SW
    ,  
    Heathcote
    J
    ,  
    Cianciara
    J
    ,  
    Farrell
    G
    ,  
    Sherman
    M
    ,  
    Willems
    B
    ,  
    et al
    Lamivudine and alpha interferon combination treatment of patients with chronic hepatitis B infection: a randomised trial.
    Gut
    2000
    46
    562
    8
     PubMed
    CrossRef
     PubMed
  80. Schiff
    ER
    ,  
    Dienstag
    JL
    ,  
    Karayalcin
    S
    ,  
    Grimm
    IS
    ,  
    Perrillo
    RP
    ,  
    Husa
    P
    ,  
    et al
    International Lamivudine Investigator Group
    Lamivudine and 24 weeks of lamivudine/interferon combination therapy for hepatitis B e antigen-positive chronic hepatitis B in interferon nonresponders.
    J Hepatol
    2003
    38
    818
    26
     PubMed
    CrossRef
     PubMed
  81. Yalcin
    K
    ,  
    Degertekin
    H
    ,  
    Yildiz
    F
    ,  
    Celik
    Y
    .  
    Comparison of 12-month courses of interferon-alpha-2b-lamivudine combination therapy and interferon-alpha-2b monotherapy among patients with untreated chronic hepatitis B.
    Clin Infect Dis
    2003
    36
    1516
    22
     PubMed
    CrossRef
     PubMed
  82. Akarca
    US
    ,  
    Ersoz
    G
    ,  
    Gunsar
    F
    ,  
    Karasu
    Z
    ,  
    Saritas
    E
    ,  
    Yuce
    G
    ,  
    et al
    Interferon-lamivudine combination is no better than lamivudine alone in anti-HBe-positive chronic hepatitis B.
    Antivir Ther
    2004
    9
    325
    34
     PubMed
     PubMed
  83. Jang
    MK
    ,  
    Chung
    YH
    ,  
    Choi
    MH
    ,  
    Kim
    JA
    ,  
    Ryu
    SH
    ,  
    Shin
    JW
    ,  
    et al
    Combination of alpha-interferon with lamivudine reduces viral breakthrough during long-term therapy.
    J Gastroenterol Hepatol
    2004
    19
    1363
    8
     PubMed
    CrossRef
     PubMed
  84. Scotto
    G
    ,  
    Palumbo
    E
    ,  
    Fazio
    V
    ,  
    Cibelli
    DC
    ,  
    Saracino
    A
    ,  
    Angarano
    G
    .  
    Efficacy and tolerability of lamivudine alone versus lamivudine plus alpha-interferon for treatment of chronic active hepatitis B in patients with a precore-mutant variant.
    Infez Med
    2006
    14
    145
    51
     PubMed
     PubMed
  85. Perrillo
    RP
    ,  
    Lai
    CL
    ,  
    Liaw
    YF
    ,  
    Dienstag
    JL
    ,  
    Schiff
    ER
    ,  
    Schalm
    SW
    ,  
    et al
    Predictors of HBeAg loss after lamivudine treatment for chronic hepatitis B.
    Hepatology
    2002
    36
    186
    94
     PubMed
    CrossRef
     PubMed
  86. Westland CE, Yang H, Delaney WE 4th, Gibbs CS, Miller MD, Wulfsohn M, et al. 437 and 438 Study Teams. Week 48 resistance surveillance in two phase 3 clinical studies of adefovir dipivoxil for chronic hepatitis B. Hepatology. 2003;38:96-103. [PMID: 12829991]
  87. Akyuz
    F
    ,  
    Kaymakoglu
    S
    ,  
    Demir
    K
    ,  
    Aksoy
    N
    ,  
    Karaca
    C
    ,  
    Danalioglu
    A
    ,  
    et al
    Lamivudine monotherapy and lamivudine plus interferon alpha combination therapy in HBeAg negative chronic hepatitis B not responding to previous interferon alpha monotherapy.
    Acta Gastroenterol Belg
    2007
    70
    20
    4
     PubMed
     PubMed
  88. Yao
    GB
    .  
    Management of hepatitis B in China.
    J Med Virol
    2000
    61
    392
    7
     PubMed
    CrossRef
     PubMed
  89. Shi
    M
    ,  
    Wang
    RS
    ,  
    Zhang
    H
    ,  
    Zhu
    YF
    ,  
    Han
    B
    ,  
    Zhang
    Y
    ,  
    et al
    Sequential treatment with lamivudine and interferon-alpha monotherapies in hepatitis B e antigen-negative Chinese patients and its suppression of lamivudine-resistant mutations.
    J Antimicrob Chemother
    2006
    58
    1031
    5
     PubMed
    CrossRef
     PubMed
  90. Janssen
    HL
    ,  
    van Zonneveld
    M
    ,  
    Senturk
    H
    ,  
    Zeuzem
    S
    ,  
    Akarca
    US
    ,  
    Cakaloglu
    Y
    ,  
    et al
    HBV 99-01 Study Group
    Pegylated interferon alfa-2b alone or in combination with lamivudine for HBeAg-positive chronic hepatitis B: a randomised trial.
    Lancet
    2005
    365
    123
    9
     PubMed
    CrossRef
     PubMed
  91. Chou
    YC
    ,  
    Yu
    MW
    ,  
    Wu
    CF
    ,  
    Yang
    SY
    ,  
    Lin
    CL
    ,  
    Liu
    CJ
    ,  
    et al
    Temporal relationship between hepatitis B virus enhancer II/basal core promoter sequence variation and risk of hepatocellular carcinoma.
    Gut
    2008
    57
    91
    7
     PubMed
    CrossRef
     PubMed
  92. Bonino
    F
    ,  
    Marcellin
    P
    ,  
    Lau
    GK
    ,  
    Hadziyannis
    S
    ,  
    Jin
    R
    ,  
    Piratvisuth
    T
    ,  
    et al
    Peginterferon Alfa-2a HBeAg-Negative Chronic Hepatitis B Study Group
    Predicting response to peginterferon alpha-2a, lamivudine and the two combined for HBeAg-negative chronic hepatitis B.
    Gut
    2007
    56
    699
    705
     PubMed
    CrossRef
     PubMed
  93. Zhao
    H
    ,  
    Kurbanov
    F
    ,  
    Wan
    MB
    ,  
    Yin
    YK
    ,  
    Niu
    JQ
    ,  
    Hou
    JL
    ,  
    et al
    Genotype B and younger patient age associated with better response to low-dose therapy: a trial with pegylated/nonpegylated interferon-alpha-2b for hepatitis B e antigen-positive patients with chronic hepatitis B in China.
    Clin Infect Dis
    2007
    44
    541
    8
     PubMed
    CrossRef
     PubMed
  94. Cindoruk
    M
    ,  
    Karakan
    T
    ,  
    Unal
    S
    .  
    Hepatic steatosis has no impact on the outcome of treatment in patients with chronic hepatitis B infection.
    J Clin Gastroenterol
    2007
    41
    513
    7
     PubMed
    CrossRef
     PubMed
  95. Wai
    CT
    ,  
    Chu
    CJ
    ,  
    Hussain
    M
    ,  
    Lok
    AS
    .  
    HBV genotype B is associated with better response to interferon therapy in HBeAg(+) chronic hepatitis than genotype C.
    Hepatology
    2002
    36
    1425
    30
     PubMed
     PubMed
  96. Chan
    HL
    ,  
    Tse
    AM
    ,  
    Zhang
    MD
    ,  
    Wong
    VW
    ,  
    Chim
    AM
    ,  
    Hui
    AY
    ,  
    et al
    Genetic polymorphisms of interleukin-1-beta in association with sustained response to anti-viral treatment in chronic hepatitis B in Chinese.
    Aliment Pharmacol Ther
    2006
    23
    1703
    11
     PubMed
    CrossRef
     PubMed
  97. Buster
    EH
    ,  
    Hansen
    BE
    ,  
    Buti
    M
    ,  
    Delwaide
    J
    ,  
    Niederau
    C
    ,  
    Michielsen
    PP
    ,  
    et al
    HBV 99-01 Study Group
    Peginterferon alpha-2b is safe and effective in HBeAg-positive chronic hepatitis B patients with advanced fibrosis.
    Hepatology
    2007
    46
    388
    94
     PubMed
    CrossRef
     PubMed
  98. Akyildiz
    M
    ,  
    Gunsar
    F
    ,  
    Ersoz
    G
    ,  
    Karasu
    Z
    ,  
    Ilter
    T
    ,  
    Batur
    Y
    ,  
    et al
    Adefovir dipivoxil alone or in combination with lamivudine for three months in patients with lamivudine resistant compensated chronic hepatitis B.
    Dig Dis Sci
    2007
    52
    3444
    7
     PubMed
    CrossRef
     PubMed
  99. Mutimer
    D
    ,  
    Naoumov
    N
    ,  
    Honkoop
    P
    ,  
    Marinos
    G
    ,  
    Ahmed
    M
    ,  
    de Man
    R
    ,  
    et al
    Combination alpha-interferon and lamivudine therapy for alpha-interferon-resistant chronic hepatitis B infection: results of a pilot study.
    J Hepatol
    1998
    28
    923
    9
     PubMed
    CrossRef
     PubMed
  100. Jang
    JW
    ,  
    Choi
    JY
    ,  
    Bae
    SH
    ,  
    Yoon
    SK
    ,  
    Chang
    UI
    ,  
    Kim
    CW
    ,  
    et al
    A randomized, controlled study of preemptive lamivudine in patients receiving transarterial chemo-lipiodolization.
    Hepatology
    2006
    43
    233
    40
     PubMed
    CrossRef
     PubMed
  101. Lu
    HY
    ,  
    Zhuang
    LW
    ,  
    Yu
    YY
    ,  
    Ivan
    H
    ,  
    Si
    CW
    ,  
    Zeng
    Z
    ,  
    et al
    Intrahepatic HBV DNA as a predictor of antivirus treatment efficacy in HBeAg-positive chronic hepatitis B patients.
    World J Gastroenterol
    2007
    13
    2878
    82
     PubMed
    CrossRef
     PubMed
  102. Santantonio
    T
    ,  
    Niro
    GA
    ,  
    Sinisi
    E
    ,  
    Leandro
    G
    ,  
    Insalata
    M
    ,  
    Guastadisegni
    A
    ,  
    et al
    Lamivudine/interferon combination therapy in anti-HBe positive chronic hepatitis B patients: a controlled pilot study.
    J Hepatol
    2002
    36
    799
    804
     PubMed
    CrossRef
     PubMed
  103. Zhao
    H
    ,  
    Zhang
    YX
    ,  
    Chen
    XY
    ,  
    Wang
    L
    ,  
    Tang
    XP
    ,  
    Si
    CW
    .  
    [A clinical study of adefovir dipivoxil in treating lamivudine refractory HBeAg-positive chronic hepatitis B].
    Zhonghua Nei Ke Za Zhi
    2007
    46
    294
    7
     PubMed
     PubMed
  104. Yao
    GB
    ,  
    Zhu
    M
    ,  
    Wang
    YM
    ,  
    Xu
    DZ
    ,  
    Tan
    DM
    ,  
    Chen
    CW
    ,  
    et al
    [A double-blind, double-dummy, randomized, controlled study of entecavir versus lamivudine for treatment of chronic hepatitis B].
    Zhonghua Nei Ke Za Zhi
    2006
    45
    891
    5
     PubMed
     PubMed
  105. Yao
    GB
    ,  
    Zhang
    DF
    ,  
    Wang
    BE
    ,  
    Xu
    DZ
    ,  
    Zhou
    XQ
    ,  
    Lei
    BJ
    .  
    [A study of the dosage and efficacy of entecavir for treating hepatitis B virus].
    Zhonghua Gan Zang Bing Za Zhi
    2005
    13
    484
    7
     PubMed
     PubMed
  106. Zhao
    H
    ,  
    Si
    CW
    ,  
    Wei
    L
    ,  
    Wan
    MB
    ,  
    Ying
    YK
    ,  
    Hou
    JL
    ,  
    et al
    [A multicenter, randomized, open-label study of the safety and effectiveness of pegylated interferon alpha 2b and interferon alpha 2b in treating HBeAg positive chronic hepatitis B patients].
    Zhonghua Gan Zang Bing Za Zhi
    2006
    14
    323
    6
     PubMed
     PubMed
  107. Liu
    G
    ,  
    Hu
    G
    ,  
    Tan
    D
    ,  
    Zhang
    Z
    .  
    [A prospective investigation on interferon treatment of chronic hepatitis B].
    Hunan Yi Ke Da Xue Xue Bao
    1998
    23
    400
    2
     PubMed
     PubMed
  108. Zhu
    M
    ,  
    Xu
    B
    ,  
    Yao
    GB
    .  
    [Durability of HBeAg seroconversion in lamivudine treatment of chronic hepatitis B patients].
    Zhonghua Gan Zang Bing Za Zhi
    2005
    13
    534
    6
     PubMed
     PubMed
  109. Song
    JW
    ,  
    Zhang
    G
    ,  
    Lin
    JG
    ,  
    Tang
    WX
    ,  
    Lin
    JS
    .  
    [Clinical study of lamivudine and interferon combinate administration to inhibit hepatitis B virus replication].
    Zhonghua Gan Zang Bing Za Zhi
    2004
    12
    593
    6
     PubMed
     PubMed
  110. Yao
    GB
    ,  
    Wang
    BE
    ,  
    Cui
    ZY
    ,  
    Yao
    JL
    ,  
    Zeng
    MD
    .  
    [The long-term efficacy of lamivudine in chronic hepatitis B: interim analysis of 3-year's clinical course].
    Zhonghua Nei Ke Za Zhi
    2003
    42
    382
    7
     PubMed
     PubMed
  111. Ma
    H
    ,  
    You
    H
    ,  
    Yin
    S
    .  
    [Clinical efficacy of lamivudine in the treatment of chronic hepatitis B].
    Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi
    2001
    15
    147
    9
     PubMed
     PubMed
  112. Yao
    G
    ,  
    Wang
    B
    ,  
    Cui
    Z
    .  
    [Long-term effect of lamivudine treatment in chronic hepatitis B virus infection].
    Zhonghua Gan Zang Bing Za Zhi
    1999
    7
    80
    3
     PubMed
     PubMed
  113. Ghany
    M
    ,  
    Liang
    TJ
    .  
    Drug targets and molecular mechanisms of drug resistance in chronic hepatitis B.
    Gastroenterology
    2007
    132
    1574
    85
     PubMed
    CrossRef
     PubMed
  114. Lim
    SG
    ,  
    Krastev
    Z
    ,  
    Ng
    TM
    ,  
    Mechkov
    G
    ,  
    Kotzev
    IA
    ,  
    Chan
    S
    ,  
    et al
    Randomized, double-blind study of emtricitabine (FTC) plus clevudine versus FTC alone in treatment of chronic hepatitis B.
    Antimicrob Agents Chemother
    2006
    50
    1642
    8
     PubMed
    CrossRef
     PubMed
  115. Lee
    HS
    ,  
    Chung
    YH
    ,  
    Lee
    K
    ,  
    Byun
    KS
    ,  
    Paik
    SW
    ,  
    Han
    JY
    ,  
    et al
    A 12-week clevudine therapy showed potent and durable antiviral activity in HBeAg-positive chronic hepatitis B.
    Hepatology
    2006
    43
    982
    8
     PubMed
    CrossRef
     PubMed
  116. Yoo
    BC
    ,  
    Kim
    JH
    ,  
    Chung
    YH
    ,  
    Lee
    KS
    ,  
    Paik
    SW
    ,  
    Ryu
    SH
    ,  
    et al
    Twenty-four-week clevudine therapy showed potent and sustained antiviral activity in HBeAg-positive chronic hepatitis B.
    Hepatology
    2007
    45
    1172
    8
     PubMed
    CrossRef
     PubMed
  117. Yoo
    BC
    ,  
    Kim
    JH
    ,  
    Kim
    TH
    ,  
    Koh
    KC
    ,  
    Um
    SH
    ,  
    Kim
    YS
    ,  
    et al
    Clevudine is highly efficacious in hepatitis B e antigen-negative chronic hepatitis B with durable off-therapy viral suppression.
    Hepatology
    2007
    46
    1041
    8
     PubMed
    CrossRef
     PubMed
  118. Lim
    SG
    ,  
    Ng
    TM
    ,  
    Kung
    N
    ,  
    Krastev
    Z
    ,  
    Volfova
    M
    ,  
    Husa
    P
    ,  
    et al
    Emtricitabine FTCB-301 Study Group
    A double-blind placebo-controlled study of emtricitabine in chronic hepatitis B.
    Arch Intern Med
    2006
    166
    49
    56
     PubMed
    CrossRef
     PubMed
  119. Gish
    RG
    ,  
    Trinh
    H
    ,  
    Leung
    N
    ,  
    Chan
    FK
    ,  
    Fried
    MW
    ,  
    Wright
    TL
    ,  
    et al
    Safety and antiviral activity of emtricitabine (FTC) for the treatment of chronic hepatitis B infection: a two-year study.
    J Hepatol
    2005
    43
    60
    6
     PubMed
    CrossRef
     PubMed
  120. Peters
    MG
    ,  
    Andersen
    J
    ,  
    Lynch
    P
    ,  
    Liu
    T
    ,  
    Alston-Smith
    B
    ,  
    Brosgart
    CL
    ,  
    et al
    ACTG Protocol A5127 Team
    Randomized controlled study of tenofovir and adefovir in chronic hepatitis B virus and HIV infection: ACTG A5127.
    Hepatology
    2006
    44
    1110
    6
     PubMed
    CrossRef
     PubMed
  121. Dore
    GJ
    ,  
    Cooper
    DA
    ,  
    Pozniak
    AL
    ,  
    DeJesus
    E
    ,  
    Zhong
    L
    ,  
    Miller
    MD
    ,  
    et al
    903 Study Team
    Efficacy of tenofovir disoproxil fumarate in antiretroviral therapy-naive and -experienced patients coinfected with HIV-1 and hepatitis B virus.
    J Infect Dis
    2004
    189
    1185
    92
     PubMed
    CrossRef
     PubMed
  122. Yao
    G
    ,  
    Wang
    B
    ,  
    Cui
    Z
    ,  
    Yao
    J
    ,  
    Zeng
    M
    .  
    A randomized double-blind placebo-controlled study of lamivudine in the treatment of patients with chronic hepatitis B virus infection.
    Chin Med J (Engl)
    1999
    112
    387
    91
     PubMed
     PubMed
  123. Perez
    V
    ,  
    Tanno
    H
    ,  
    Villamil
    F
    ,  
    Fay
    O
    .  
    Recombinant interferon alfa-2b following prednisone withdrawal in the treatment of chronic type B hepatitis.
    J Hepatol
    1990
    11
    S113
    7
     PubMed
    CrossRef
     PubMed
  124. Perez
    V
    ,  
    Findor
    J
    ,  
    Tanno
    H
    ,  
    Sordá
    J
    .  
    A controlled trial of high dose interferon, alone and after prednisone withdrawal, in the treatment of chronic hepatitis B: long term follow up.
    Gut
    1993
    34
    S91
    4
     PubMed
    CrossRef
     PubMed
  125. Cooksley
    WG
    ,  
    Piratvisuth
    T
    ,  
    Lee
    SD
    ,  
    Mahachai
    V
    ,  
    Chao
    YC
    ,  
    Tanwandee
    T
    ,  
    et al
    Peginterferon alpha-2a (40 kDa): an advance in the treatment of hepatitis B e antigen-positive chronic hepatitis B.
    J Viral Hepat
    2003
    10
    298
    305
     PubMed
    CrossRef
     PubMed
  126. Flink
    HJ
    ,  
    van Zonneveld
    M
    ,  
    Hansen
    BE
    ,  
    de Man
    RA
    ,  
    Schalm
    SW
    ,  
    Janssen
    HL
    .  
    HBV 99-01 Study Group
    Treatment with Peg-interferon alpha-2b for HBeAg-positive chronic hepatitis B: HBsAg loss is associated with HBV genotype.
    Am J Gastroenterol
    2006
    101
    297
    303
     PubMed
    CrossRef
     PubMed
  127. Liaw
    YF
    ,  
    Leung
    NW
    ,  
    Chang
    TT
    ,  
    Guan
    R
    ,  
    Tai
    DI
    ,  
    Ng
    KY
    ,  
    et al
    Effects of extended lamivudine therapy in Asian patients with chronic hepatitis B. Asia Hepatitis Lamivudine Study Group.
    Gastroenterology
    2000
    119
    172
    80
     PubMed
    CrossRef
     PubMed
  128. Honkoop
    P
    ,  
    de Man
    RA
    ,  
    Niesters
    HG
    ,  
    Main
    J
    ,  
    Nevens
    F
    ,  
    Thomas
    HC
    ,  
    et al
    Quantitative hepatitis B virus DNA assessment by the limiting-dilution polymerase chain reaction in chronic hepatitis B patients: evidence of continuing viral suppression with longer duration and higher dose of lamivudine therapy.
    J Viral Hepat
    1998
    5
    307
    12
     PubMed
    CrossRef
     PubMed
  129. Dienstag
    JL
    ,  
    Goldin
    RD
    ,  
    Heathcote
    EJ
    ,  
    Hann
    HW
    ,  
    Woessner
    M
    ,  
    Stephenson
    SL
    ,  
    et al
    Histological outcome during long-term lamivudine therapy.
    Gastroenterology
    2003
    124
    105
    17
     PubMed
    CrossRef
     PubMed
  130. Nevens
    F
    ,  
    Main
    J
    ,  
    Honkoop
    P
    ,  
    Tyrrell
    DL
    ,  
    Barber
    J
    ,  
    Sullivan
    MT
    ,  
    et al
    Lamivudine therapy for chronic hepatitis B: a six-month randomized dose-ranging study.
    Gastroenterology
    1997
    113
    1258
    63
     PubMed
    CrossRef
     PubMed
Figure.

Absolute rates of the frequent (>40%) adverse effects after interferon therapy, by baseline HBeAg status.

HBeAg = hepatitis B e antigen.

Table. Effects of Drug Therapies for Chronic Hepatitis B on Clinical Outcomes

Table. Effects of Drug Therapies for Chronic Hepatitis B on Clinical Outcomes
PDF Supplemental Content
Appendix Table 1. Effects of Drug Therapies for Chronic Hepatitis B on Nonclinical Intermediate Outcomes
PDF Supplemental Content
Appendix Table 2. Randomized, Controlled Trial of Participants Who Withdrew from Treatment and Had AEs

Clinical Slide Sets

Terms of Use

The In the Clinic® slide sets are owned and copyrighted by the American College of Physicians (ACP). All text, graphics, trademarks, and other intellectual property incorporated into the slide sets remain the sole and exclusive property of the ACP. The slide sets may be used only by the person who downloads or purchases them and only for the purpose of presenting them during not-for-profit educational activities. Users may incorporate the entire slide set or selected individual slides into their own teaching presentations but may not alter the content of the slides in any way or remove the ACP copyright notice. Users may make print copies for use as hand-outs for the audience the user is personally addressing but may not otherwise reproduce or distribute the slides by any means or media, including but not limited to sending them as e-mail attachments, posting them on Internet or Intranet sites, publishing them in meeting proceedings, or making them available for sale or distribution in any unauthorized form, without the express written permission of the ACP. Unauthorized use of the In the Clinic slide sets will constitute copyright infringement.

This feature is available only to Registered Users

Subscribe/Learn More
Submit a Comment

0 Comments

PDF
Not Available
Citations
Citation

Shamliyan TA, MacDonald R, Shaukat A, et al. Antiviral Therapy for Adults With Chronic Hepatitis B: A Systematic Review for a National Institutes of Health Consensus Development Conference. Ann Intern Med. 2009;150:111–124. doi: https://doi.org/10.7326/0003-4819-150-2-200901200-00101

Download citation file:

  • Ris (Zotero)
  • EndNote
  • BibTex
  • Medlars
  • ProCite
  • RefWorks
  • Reference Manager

© 2019

×
Permissions

Published: Ann Intern Med. 2009;150(2):111-124.

DOI: 10.7326/0003-4819-150-2-200901200-00101

©
2009 American College of Physicians
81 Citations

See Also

National Institutes of Health Consensus Development Conference Statement: Management of Hepatitis B
View MoreView Less
CME/MOC Activity Requires Users to be Registered and Logged In.
Sign in below to access your subscription for full content
INDIVIDUAL SIGN IN
Sign In|Set Up Account
You will be directed to acponline.org to register and create your Annals account
Annals of Internal Medicine
CREATE YOUR FREE ACCOUNT
Create Your Free Account|Why?
To receive access to the full text of freely available articles, alerts, and more. You will be directed to acponline.org to complete your registration.
×
The Comments Feature Requires Users to be Registered and Logged In.
Sign in below to access your subscription for full content
INDIVIDUAL SIGN IN
Sign In|Set Up Account
You will be directed to acponline.org to register and create your Annals account
Annals of Internal Medicine
CREATE YOUR FREE ACCOUNT
Create Your Free Account|Why?
To receive access to the full text of freely available articles, alerts, and more. You will be directed to acponline.org to complete your registration.
×
link to top

Content

  • Home
  • Latest
  • Issues
  • Channels
  • CME/MOC
  • In the Clinic
  • Journal Club
  • Web Exclusives

Information For

  • Author Info
  • Reviewers
  • Press
  • Readers
  • Institutions / Libraries / Agencies
  • Advertisers

Services

  • Subscribe
  • Renew
  • Alerts
  • Current Issue RSS
  • Latest RSS
  • In the Clinic RSS
  • Reprints & Permissions
  • Contact Us
  • Help
  • About Annals
  • About Mobile
  • Patient Information
  • Teaching Tools
  • Annals in the News
  • Share Your Feedback

Awards and Cover

  • Personae (Cover Photo)
  • Junior Investigator Awards
  • Poetry Prize

Other Resources

  • ACP Online
  • Career Connection
  • ACP Advocate Blog
  • ACP Journal Wise

Follow Annals On

  • Twitter Link
  • Facebook Link
acp link acp
silverchair link silverchair

Copyright © 2019 American College of Physicians. All Rights Reserved.

Print ISSN: 0003-4819 | Online ISSN: 1539-3704

Privacy Policy

|

Conditions of Use

This site uses cookies. By continuing to use our website, you are agreeing to our privacy policy. | Accept
×

You need a subscription to this content to use this feature.

×
PDF Downloads Require Access to the Full Article.
Sign in below to access your subscription for full content
INDIVIDUAL SIGN IN
Sign In|Set Up Account
You will be directed to acponline.org to register and create your Annals account
INSTITUTIONAL SIGN IN
Open Athens|Shibboleth|Log In
Annals of Internal Medicine
PURCHASE OPTIONS
Buy This Article|Subscribe
You will be redirected to acponline.org to sign-in to Annals to complete your purchase.
CREATE YOUR FREE ACCOUNT
Create Your Free Account|Why?
To receive access to the full text of freely available articles, alerts, and more. You will be directed to acponline.org to complete your registration.
×
Access to this Free Content Requires Users to be Registered and Logged In. Please Choose One of the Following Options
Sign in below to access your subscription for full content
INDIVIDUAL SIGN IN
Sign In|Set Up Account
You will be directed to acponline.org to register and create your Annals account
Annals of Internal Medicine
CREATE YOUR FREE ACCOUNT
Create Your Free Account|Why?
To receive access to the full text of freely available articles, alerts, and more. You will be directed to acponline.org to complete your registration.
×